
Development of an Open-Source and Cross-Platform
Client for a Collaborative List Application

Lucas Jung

Jamila Sam, Barbara Jobstmann

EPFL BA5 2023

Contents

1 Introduction 1
1.1 Understanding the Problem Space . 1

1.1.1 Survey of Existing Solutions . 2
1.2 Goals . 2
1.3 Walkthrough . 3

2 Tooling 4
2.1 Programming Environment . 4

2.1.1 Language and Framework . 4
2.1.2 Used Packages . 5

2.2 Design . 6

3 Crafting the User Experience 7
3.1 Defining the Design Ideology . 7
3.2 Application Logo . 8
3.3 User Interface . 9

3.3.1 Account Forms . 9
3.3.2 Collection Pages . 10
3.3.3 Modals . 11
3.3.4 Selecting the Right Font . 11

4 Code Architecture 13
4.1 Project Structure . 13
4.2 Models Structure . 16

4.2.1 Account vs. Account Properties . 17
4.2.2 Dynamic links and reactivity . 18

5 Results 20
5.1 Overview of the Application . 20
5.2 Beta Testing . 24

5.2.1 Reviews . 24
5.3 Future of Open-Items . 26
5.4 Conclusion . 28

A Design (Figma export) 30

Development of a Collaborative List Application Lucas Jung

Chapter 1

Introduction

In a world filled with to-do lists, shopping lists, project task lists, and more, the need
for an efficient and user-friendly list making tool is definitely present. Many of us have
experienced the frustration of using various list making applications that did not quite
meet our expectations. This project aims to address these issues by creating a versatile
and user centered list management solution called Open-Items.

1.1 Understanding the Problem Space
The motivation for this project arises from my personal experience of using a lot of
different list writing tools. It ranges from traditional pen and paper to very sophisticated
note taking software with fancy graph supports. However, these tools consistently fall
short of my expectations. Their main problems and limitations are exposed below.

First, most of the existing solutions involve proprietary software, which consequently come
with a long list of associated flaws:

• Cost, freemium (or straight up paid) plan, sometimes even ads.

• Security and transparency concerns.

• Vendor lock-in making it way harder for users to switch to a different solution
if/when they want to.

• Lack of community/users consideration, input and participation.

• Single client for interacting with the application.

• Enforced application updates that break user habits.

Secondly, some solutions suffer from an excess of features, significantly reducing usability
as a result. This often takes the form of the unnecessary inclusion of calendar and contact
functionalities.

Finally, they often support only a single platform, forcing users to seek alternative solu-
tions for each of their devices, with the syncing process and separation of concerns that
it implies. As a result I am using a different device, often my phone, rather than the one
I was working on, often my computer, to access my lists which is far from ideal.

1

Development of a Collaborative List Application Lucas Jung

To address these issues, this bachelor project will explore the development of a better list
management application empowering users with an efficient solution for storing lists.

1.1.1 Survey of Existing Solutions
In this section we will briefly discuss some of the existing solutions in the list management
space (in no particular order) to provide context for the problems mentioned above.

• Google Keep1 (Proprietary) - It has a nice user-interface and it is easy to use.
However, it does not offer offline functionality.

• Microsoft ToDo2 (Proprietary) - It also has a good user-interface. It does not work
offline and it does not support infinite item nesting.

• Todoist3 (Proprietary) - An excessive number of features makes it very hard to use.
There is still no offline support.

• Any.do4 (Proprietary) - The user interface could be a lot simpler, and it also suffers
from too many features.

• Tasks.org5 (Open-Source) - It is the existing solution that is the closest to this
project (mainly due to being open-source). It is getting old: it was based on Astrid6

which was created in 2008 and discontinued in 2013. It is not cross-platform, only
packaged as an Android application (no WEB, desktop or Apple support).
The application does not feel intuitive as the interface is not really user-friendly.
The buttons feel out of place and there is too much empty space around items. I
also find the menus hard to navigate with too many options packed at the same
place.
The syncing backend choices are not ideal as different standards have limited com-
patibility with the application’s features.

The landscape is largely dominated by proprietary applications carrying all the drawbacks
listed above and lacking the option to self-host the backend infrastructure if desired.

1.2 Goals
The goals for this bachelor project are centered around describing and developing a user-
friendly and efficient list management application that aims to address the identified
problems in the current landscape. The primary focus will therefore lie on the development
of the client-side component of the Open-Items project. Nevertheless the upcoming server
side addition will be kept in mind in order to have a good basis to better integrate the
backend part when ready.

1Google Keep: https://keep.google.com
2Microsoft ToDo: https://to-do.microsoft.com
3Todoist: https://todoist.com
4Any.do: https://www.any.do
5Tasks.org: https://tasks.org
6Astrid: https://en.wikipedia.org/wiki/Astrid_(application)

2

https://keep.google.com
https://to-do.microsoft.com
https://todoist.com
https://www.any.do
https://tasks.org
https://en.wikipedia.org/wiki/Astrid_(application)
https://keep.google.com
https://to-do.microsoft.com
https://todoist.com
https://www.any.do
https://tasks.org
https://en.wikipedia.org/wiki/Astrid_(application)

Development of a Collaborative List Application Lucas Jung

The development will have the following core directives:

• Simplicity: the project will prioritize simplicity in design and functionality, com-
plexity will only be introduced as last resort when it really benefits user experience.

• Offline support: the client will adopt an “offline first” approach, ensuring that
the application works as expected even when internet connection is lost. When
connectivity is restored, the client will catch up with the server and synchronize
any change made during the offline period.
On top of that, the client will support fully offline “accounts”, ensuring that none
of their list data will ever be sent to a server. This feature provides enhanced
privacy and security as the data from those accounts will not leave the device they
were created on. Sharing and synchronization will therefore be disabled for those
accounts.

• Open-source support: the application will embrace open-source principles and prac-
tices.

• Cross-platform operability: the application will be designed to work seamlessly
across various devices and operating systems. It should be accessible on desktop
computers, smartphones, and tablets, ensuring users can access their lists from any
device.

1.3 Walkthrough
After this introduction, the document is split into different parts.

We will begin by looking at the tools used for the project. This part explains the pro-
gramming environment, programming languages, UI framework, and the main packages
used.

The third section, “Crafting the User Experience”, is about the designing phase of the
project. It talks about the design ideology, the application logo creation, and explains the
user interface, including authentication forms, collection pages, modals, and font selection.

Next, we get into the details of the code structure. This part focuses on the project’s
code organization and models’ structure. A detailed diagram of the interactions between
the code’s data classes will provide a great first understanding of how the different parts
of the code interact with each other. It later goes into more details about the interesting
difference between account and account properties, and the handling of dynamic links
and reactivity. Please note that this section assumes prior knowledge about reactive user
interfaces implementation and dynamic database references.

Finally, we get an overview of the application, and talk about the beta testing phase,
before discussing the experiences and lessons learned during development, and conclude
with a summary. The document wraps up with an appendix, which contains extra design
resources along with the full Figma export that might interest the most enthusiastic
readers.

3

Development of a Collaborative List Application Lucas Jung

Chapter 2

Tooling

In this chapter, I will provide an overview of the primary tools and resources that I used
for this project.

2.1 Programming Environment
Choosing the right programming environment is important for any software project. I have
selected a combination of tools that align with the requirements explained in Chapter 1
Introduction. I also had to consider the limited timeframe of the project and the need for
simplicity, given that I was developing the application alone.

The code is version controlled in the Open-Items Git repository1 on GitHub. I chose
GitHub as it is already the most widely used online Git version control platform for
open-source projects, and it had all the functionalities I needed.

2.1.1 Language and Framework
I chose to code using the Dart2 programming language along with its Flutter3 UI frame-
work. Dart is a versatile and performant high-level language. Originally developed at
Google in 2011, it is known for its efficiency and compatibility with various platforms. It
comes with the Flutter UI development kit also created at Google in 2017. Together they
make the perfect pair for developing cross-platform applications with a single code base.

Additionally, Dart comes with a modern and expressive syntax that is both easy to read
and write. It supports advanced language functionalities like generics, null-safety, mixins,
code generation and type inference. It comes with a comprehensive standard library and a
package manager called Pub4 providing a rich ecosystem of tools and libraries to facilitate
the development even more (see Subsection 2.1.2 Used Packages).

Flutter gained popularity for its ability to create stunning and natively compiled ap-
plications for mobile, web, and desktop. It has a widget-oriented approach to building

1Open-Items Git repository: https://github.com/gruvw/open_items
2Dart: https://dart.dev
3Flutter: https://flutter.dev
4Pub: https://pub.dev

4

https://github.com/gruvw/open_items
https://dart.dev
https://flutter.dev
https://pub.dev
https://github.com/gruvw/open_items
https://dart.dev
https://flutter.dev
https://pub.dev

Development of a Collaborative List Application Lucas Jung

user interfaces: a widget is conceptually similar to an object for describing the state,
logic, interaction and design of a visual application component. This is especially great
to improve code reusability and to apply the DRY5 (Don’t Repeat Yourself) principle to
user-interface design.

2.1.2 Used Packages
During the development process I used multiple essential Flutter/Dart packages in order
to improve my workflow and boost my productivity. Note that all packages required to
build the project are already specified in the pubspec.yaml file, meaning you do not
have to install them manually. When you build the project, Flutter will automatically
download the correct version of every package and bundle them together to form the final
binary executable.

Here is a quick overview of the main packages I have used:

• Hive DB6: Lightweight and very fast key-value database written in pure Dart. This
NoSQL database has the main advantage of being fully cross-platform without re-
quiring any other dependency. Moreover, it integrates seamlessly with the other
packages below. This package is used in the Open-Items client to persist user data
across application restarts.

• Shared preferences7: A platform-specific persistent storage wraper for simple data.
It is very useful for non-critical, interface related data persistence.

• Riverpod8: A reactive caching and data-binding solution, simplifying application
state accessibility. It is mainly used to reactively trigger widget rerenders when the
application data changes.

• Flutter Hooks9: Hooks are a set of reusable and customizable widgets and utilities.
They simplify common tasks, increase code sharing between widgets and facilitates
the process of writing stateful widgets.

• NanoID10: A tiny, secure and URL-friendly unique string ID generator. It is very
useful for generating unique identifiers within the application. I mostly used it to
reference objects in the local Hive database. This package was originally made for
JavaScript where it gained a lot of popularity. It was therefore later ported to many
more programming languages, including Dart.

• Icon Font Generator11: An easy way to convert SVG icons to an OpenType font
and generate a Flutter-compatible class that contains identifiers for the icons.

This list is non-exhaustive, and it is worth noting that there are numerous smaller packages
that I used throughout the project, though their significance and contribution may be
relatively minor compared to the ones described above.

5DRY: https://en.wikipedia.org/wiki/Don't_repeat_yourself
6Hive DB: https://hivedb.dev
7Shared preferences: https://pub.dev/packages/shared_preferences
8Riverpod: https://riverpod.dev
9Flutter Hooks: https://github.com/rrousselGit/flutter_hooks

10NanoID: https://github.com/ai/nanoid
11Icon Font Generator: https://github.com/ScerIO/icon_font_generator

5

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://hivedb.dev
https://pub.dev/packages/shared_preferences
https://riverpod.dev
https://github.com/rrousselGit/flutter_hooks
https://github.com/ai/nanoid
https://github.com/ScerIO/icon_font_generator
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://hivedb.dev
https://pub.dev/packages/shared_preferences
https://riverpod.dev
https://github.com/rrousselGit/flutter_hooks
https://github.com/ai/nanoid
https://github.com/ScerIO/icon_font_generator

Development of a Collaborative List Application Lucas Jung

2.2 Design
For the design phase of the project, I relied on Figma12, a powerful cross-platform design
and prototyping tool. This application is really well crafted and allows for fast paced
design iterations thanks to the following features:

• Vector editing - Figma’s vector editing capabilities are well built. They simplify
the creation of scalable and resolution independent assets that can adapt to various
screen sizes.

• Components and styles - The components/styles/variables system facilitates the
creation and management of design elements by maintaining coherence across ev-
ery component. If you need to change a shared element, like the font size or the
background color, the change will be automatically reflected across all components
and pages.

• Exports - Figma provides tools for exporting assets making it easier to include
designs in different places, like this document: see Appendix A Design (Figma
export).

• Live preview - The live preview feature allowed me to generate a link that led to a
live updating read-only view of my designs. It allowed for fast paced iterations when
gathering feedback from friends and family. It also reduced the friction associated
with sending updates to the two project supervisors every time I made changes. We
always had the same shared and up-to-date view of the multiple design elements
and application pages.

12Figma: https://www.figma.com

6

https://www.figma.com
https://www.figma.com

Development of a Collaborative List Application Lucas Jung

Chapter 3

Crafting the User Experience

In this chapter, we will dive into the design phase of the Open-Items client user interface.
Designing a good user interface is a crucial aspect of any software development project,
as it directly impacts how users interact with and experience the application. Over the
course of about two weeks, I dedicated my efforts to drawing the different pages and UI
components of the application. These designs serve as the blueprint for the user interface,
and will be integrated as closely as possible into code at a later stage.

In this chapter I will frequently refer to design elements of Appendix A Design (Figma
export), denoting them with unique design numbers (e.g. D1.1 for the first image).
Additionally, I will include certain images within the text for improved accessibility and
convenience when navigating between them.

Keep in mind that these designs are purely creative work and may evolve when starting
the development journey and taking into account the actual Flutter code implementation.

3.1 Defining the Design Ideology
The design of the application places a strong emphasis on simplicity and minimalism.
The primary goal is to enable every user to accomplish tasks quickly and efficiently.
Unnecessary distractions must be avoided to keep the user focused on their intended
goal when opening the application. The perfect design is the one the user does not
notice, as it seamlessly integrates into their workflow, making tasks feel effortless and
intuitive. Paradoxically, this pursuit of simplicity can prove to be surprisingly complicated
in practice.

To achieve this, the design consists of a bichromatic color scheme of black and white. This
choice ensures the highest contrast making it easier to read and navigate, while mimicking
the list writing experience that everyone is used to on pen and paper. There are only
a handful of exceptions to this rule, being some shades of grey for placeholder texts like
D5.3, and the use of red indicating a potentially dangerous or irreversible action is about
to take place like in D3.2 and D4.2. This distinctive “danger” color, being the only one
out of the black to white spectrum, makes it an even greater contrast effectively warning
the user.

7

Development of a Collaborative List Application Lucas Jung

Figure 3.1: D3.1 - Lists page & D3.2 - Side bar

Most of the icons used in this design are taken from the Open-Source Google Icons1 library.
These icons align with the project’s design principles and they are already integrated into
the Flutter ecosystem, making this icon library a good basis for the project. In the rare
instances where I could not find the icons I needed in this library, I designed my own in
the same “Material” style directly in Figma.

3.2 Application Logo
The application logo also had to adhere and comply to the principles of simplicity and
to the bichromatic color scheme in order to effectively reflect the overall design and feel
of the application. Furthermore, given that an application logo occupies only about 1
percent of the total available home screen space on a standard smartphone, it had the
additional constraint of being visible and recognizable even at a reduced size.

Figure 3.2: D1.1 - Launcher icon dark

The concept of the logo involves interesting ideas hidden behind a minimalistic design. It
features a basic checkmark symbolizing the completion of a checklist item, stacked with

1Google Icons: https://fonts.google.com/icons

8

https://fonts.google.com/icons
https://fonts.google.com/icons

Development of a Collaborative List Application Lucas Jung

the reversed outline of a second checkmark on top of the first one. This combination also
forms a tilted empty checkbox at the center for those who pay close attention to details.

The D1.1 design element (on page 31) illustrate the step by step process of how the logo
was put together from left to right. It starts with the single checkmark drawing, followed
by the beforementioned combination of the two checkmarks, and finally, on the very right,
the two variations of the logo (with reversed colors). After gathering feedback from my
friends and family, the dark background version was the most popular one, so I decided
to stick with it.

3.3 User Interface
The design of the user interface is divided into three main categories, each of which is
discussed below.

3.3.1 Account Forms
When users open a complex application, their initial step is typically to create or log into
an account. There are three types of forms that serve this purpose before one can fully
use the application.

1. Create an online account D2.1
2. Create an offline account D2.3: the only account type supported for the bachelor

project, as it will only support client-side operations.

3. Log into an existing online account D2.2

Figure 3.3: D2.1 - New online account form

The two online account related forms offer the option for users to select a hosting server
for their account. This is possible thanks to a server selection component where one can
manually set the URL/IP to use, permitting self-hosting capabilities. This custom server

9

Development of a Collaborative List Application Lucas Jung

notion is also present in D3.2 where connected accounts are listed, as a single client could
have access to multiple accounts stored on different servers.

Additionally, as the usual account creation forms do, the user’s email address is required
making mass account creation more difficult and enabling account password recovery.

3.3.2 Collection Pages
This is probably the most important part of the user interface as it is where the users will
primarily interact with the application.

The lists page D3.1 is the first screen that will show up when the application is opened,
provided there is at least one active account. It displays the different lists the user has
along with icons depicting the list type (checklist, ordered list, bullet points).

Once a user clicks on a list the application will transition to the items page D4.1, showing
the different items in the selected list. As already mentioned, one of the unique features
of the application is “infinite nesting”: every item can be a collection in and of itself and
have subitems attached to it. When an item has subitems, the item’s text is displayed in
bold, and clicking on it leads to D4.2, which shows the subitems.

Figure 3.4: D4.1 - Items page & D4.2 - Subitems page

In all of these pages, there is an new/add button at the bottom of the screen to add new
elements to the current view. Users can also slide elements from right to left to reveal the
delete button (e.g. D4.2), which you then need to press to actually delete the collection:
a non-invasive double action used for deletion confirmation.

Reordering collections is achieved through a long press and dragging them to the desired
position. Collection specific settings and options are accessible through the “more” menu,
represented by three vertically stacked dots in the top right corner of the screen. The

10

Development of a Collaborative List Application Lucas Jung

offline icon indicates that the collection currently displayed is local to the device and not
synced to any server (offline account feature).

3.3.3 Modals
Finally, the pop-up modals play the crucial role of informing and interacting with the
user in a synchronous manner.

• D5.1 - A simple information dialog, making sure the user has read, agreed to and/or
understood a specific message.

• D5.2 - A cancelable information dialog asking for extra user input or providing
additional context before actually executing or canceling a predefined action.

• D5.3 - A single text input field form to acquire a string input from the user.

• D5.4 - A selection dialog allowing the user to choose one option among several
propositions.

• D5.5 - The ordering options modal letting the user choose their preferred way of
ordering their collections. This one is a bit different from the others as it appears
from the bottom of the screen, letting the user see the chosen ordering apply to the
collections as they select it.

Figure 3.5: D5.2 - Cancel dialog

3.3.4 Selecting the Right Font
Choosing the appropriate font for the application is important as it impacts readability,
ease of use and user engagement, making it a central point in shaping the application’s
visual identity.

I restricted the fonts to choose from to the Open-Source Google Fonts2 library, as it has
a lot of choice and is already integrated into the Flutter ecosystem.

I initially considered using a monospaced font, as it would perfectly align with the ap-
plication’s design principles of readability and ease of use, often disambiguating similar
characters and not having the overhead of reading variable width letters. On top of that,
as a developer I personally always use them and find them appealing. However, after gath-
ering feedback from friends and family, it became evident that they found monospaced
fonts too disruptive as they were not used to seeing them. They felt like it was giving an
old/typewriter feel to the overall application which was not the initial purpose. Another
factor that came into play is the fact that monospaced fonts tend to use more horizontal
space than proportional fonts. This can be an issue on smaller devices.

2Google Fonts: https://fonts.google.com

11

https://fonts.google.com
https://fonts.google.com

Development of a Collaborative List Application Lucas Jung

The ultimate goal for the chosen font is for it to seamlessly blend into the user experience,
becoming virtually unnoticed. After a lot of hesitation between enforcing a monospaced
font, potentially causing slight disruption to users for improved readability, and the im-
perative that the font should go unnoticed, I finally decided to opt for the widely popular
proportional font, Roboto3 designed by Christian Robertson and licensed under Apache
License v24.

3Roboto: https://fonts.google.com/specimen/Roboto
4Apache License v2: https://www.apache.org/licenses/LICENSE-2.0

12

https://fonts.google.com/specimen/Roboto
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://fonts.google.com/specimen/Roboto
https://www.apache.org/licenses/LICENSE-2.0

Development of a Collaborative List Application Lucas Jung

Chapter 4

Code Architecture

Let us dive into the organization of the codebase, examining the directory structure and
providing insights into the purpose of each major component.

4.1 Project Structure
The project follows a strict and well-defined directory structure to enhance clarity, sep-
aration of concerns, abstractions, and maintainability. Here is a nonexhaustive overview
of the primary directories:

global utils
└── styles

└── icons widgets
├── authenticate

models ├── collections
├── objects │ ├── collection_page
├── ordering │ └── lists_page
├── properties │ └── drawer
└── stores ├── components

└── hive │ ├── buttons
│ ├── modals

state │ └── structure
├── application ├── router
└── shared_preferences ├── utils

└── validation

13

Development of a Collaborative List Application Lucas Jung

Let us navigate through the directories and files so as to understand the purpose and
interconnections between every element:

• The global directory serves as a container for globally used resources and con-
figurations. This includes global styles, colors, icons and layout constants that
are utilized throughout the entire application. Keeping these resources centralized
ensures consistency in the user interface, avoids duplication and simplifies potential
future modifications.
This directory also contains files related to all the constant string literals and core
constant values that might be shared across the codebase.

• The models directory is dedicated to defining the data models used within the ap-
plication. This includes the abstract structure of objects, ordering mechanisms, and
various properties associated with the data. The models in the project are described
in greater details in the Section 4.2 Models Structure below. It also contains the
database abstraction class and implementations that are used throughout the whole
codebase.

– The stores subdirectory holds the concrete implementations of the models
for device local persistence, specifically using the hive database.

– The ordering subdirectory deals with mechanisms related to sorting and
ordering data. It involves sorting algorithms, comparators, or any logic asso-
ciated with the arrangement of collections. It is also in this directory that the
two enumerated types related to ordering (ListsOrdering, ItemsOrdering)
and their variants are defined.

• The state directory contains the implementations of the application’s live state
management. This ranges from global application state, authenticated accounts,
collections, and any other user interface state related logic. It contains the def-
initions of all the providers used for application reactivity (see Subsection 4.2.2
Dynamic links and reactivity) and the different database middlewares allowing UI
rebuilds when subscribed data changes.

– The shared_preferences subdirectory contains code related to managing
shared preferences, which are used for persisting simple key-value pairs such as
non-synced user selected application settings (like the default collection type).

• The utils directory contains general purpose functions and helper classes that
are not complex enough to justify a dedicated module. It contains for example
some Dart language extensions for convenience: specific workarounds over some
dart-lang1 related open issues.

• The widgets directory houses every single UI component that contributes to the
overall structure and appearance of the application. These components are de-
signed to be modular, reusable and self-contained. As such, most of the files in
this directory are making extensive use of all the functionalities present in the other
directories described above.

1dart-lang: https://github.com/dart-lang/language

14

https://github.com/dart-lang/language
https://github.com/dart-lang/language

Development of a Collaborative List Application Lucas Jung

– The majority of the atomic design components from Figma are implemented in
the components subdirectory. It is a versatile collection of components that
are used across various parts of the application.

– The utils subdirectory serves the same purpose as the top level directory with
the same name, except that it is geared towards user interfaces. It holds some
hook definitions, the overall scrolling behavior, and some progress indicators
for example.

– The router subdirectory is responsible of the navigation in the application.
The route generator is implemented there, and whenever the user requests to
view a new/different page it is code from this directory that gets executed. It
is also responsible for displaying the correct initial page when the application
is opened.

– The validation subdirectory is the place where all input validation is im-
plemented. The core validation library is defined in the core.dart file. The
other files in this subdirectory are specific validator implementations for dif-
ferent kind of user inputs (account names, list titles, item texts, ...).

– There are a total of three pages/screens in the application. The authentication
page is defined in the authentication subdirectory. The list page is defined
in the lists_page subdirectory along with its account sidebar in drawer.
Finally the collection page, responsible for displaying items (or subitems), is
defined in the collection_page subdirectory.
All of these require some closely feature-related UI components that are imple-
mented in their respective directory. It facilitates a nuanced comprehension of
the code at a local level, mitigating the need for extensive back and forth that
would otherwise be required when working on a specific page.

15

Development of a Collaborative List Application Lucas Jung

4.2 Models Structure
The following diagram accurately represents the Dart code abstractions and aims to effi-
ciently cover the diverse data models within the project.

Figure 4.1: Code models diagram

Here is a brief overview of the primary classes depicted in the diagram:

• Database Local Object - An abstract class representing any object that needs
to be persisted on a user’s local device.

• Database Server Object - An abstract class that is extended by every resource
that also lives on the server’s database.

16

Development of a Collaborative List Application Lucas Jung

• Collection - The super-class of List and Item, compiling common functionalities
and constituting the capacity of an object to reference a collection of items. Any
Item may also be a collection of items itself. This feature is called “sublists”.

• List - It is the entry point to a collection of collections. We can see a List as the
most top-level item class: used to represent an item that does not have a parent
collection.

• Item - A class to represent an element of a list/collection.

• Account - Represents the unit of authentification: an account is a user from the
point of view of the server. Of course, in reality a user can have multiple accounts,
but the sever will never be aware that two accounts belong to the same real-world
user.

• Account Properties - The properties/metadata attached to an Account. It
serves as a connection between an account and the lists properties it has access to.

• List Properties - The properties/metadata attached to a List. It serves as a
connection between some list properties and the actual list behind it. They are
required as two different accounts could have access to the same underlying list but
might require their own personal attached metadata.

Let us dive into some specific intricacies surrounding key points and explore some of the
more complex components in greater detail.

4.2.1 Account vs. Account Properties
You might question why the Account Properties class does not extend the Database Server
Object class, unlike every other concrete class. This is due to the fact that, in contrast to
the client-side, an Account and its associated Account Properties collectively constitute
a unified entity within the underlying Open-Items backend server architecture.
Indeed, the serverId of a specific Account is the same that is used in case we need
to target the corresponding Account Properties when communicating with the server.
Consequently, the Account Properties cannot be strictly qualified as a Database Server
Object, given that it is not associated with a different serverId than its Account and
does not constitute a full-fledged server object on its own.

Now, you might be curious about the reason for keeping it distinct from the Account
class? This has to do with the fact that not every account reference, on a particular
device, belongs to the authenticated user. Therefore the user should not be able to access
or store the corresponding Account Properties from this device. There are two categories
of accounts that can live on a user’s device: an “authenticated account”2 represents an
account that is authenticated and therefore owned by the user, whereas a “referenced ac-
count” is a plain reference to an account the local user might not have access to. Indeed,
retaining a reference to an account that we do not necessarily own can be essential, for
instance, to identify the creator or participants of a shared list.
This is the reason behind the dashed arrow representation of the bidirectional reference
between an account and its properties on the diagram: the relationship might not exist

2Authenticated accounts are called local accounts in the codebase.

17

Development of a Collaborative List Application Lucas Jung

locally if the user is not authenticated with that account. This emphasizes the fundamen-
tal distinction between an authenticated account and a referenced account for which no
permissions are granted.

4.2.2 Dynamic links and reactivity
In the architectural design, every concrete class in the diagram is linked with a Hive
database implementation to enable object persistence (see Section 4.1 Project Structure).
This standardized approach to database implementation enhances the overall robustness
and reliability of the system. In addition, these concrete abstractions maintain the flex-
ibility of swapping the database implementation with a different one without heavily
refactoring the rest of the codebase.

The final element that is worth further explanations is the actual implementation of
dynamic links/references depicted in the diagram. When a button is clicked on the user
interface, the relevant data is retrieved from the local database. However, at this point,
the view is non-reactive, merely displaying a snapshot of the data.
The challenge lies in efficiently accessing referenced objects and ensuring that copies
remain synchronized, reacting to changes to consistently display the most accurate version
of the data on the screen. Let us split those two concepts.

References under the hood

Each reference or link in the diagram actually corresponds to the uid (unique identifier)
of the referenced object. It is, in some sense, comparable to a join ID column in the SQL
world. However, the link system implements lazy loading: querying an object from the
database yields a Dart “copy” of the object along with its properties, deferring retrieval
of the referenced object.

This approach results in really fast and precise queries where we only fetch the data we
need from the database. It is important as the user does not want to wait for the data to
load. However, the downside is that accessing the referenced object requires a subsequent
query, demanding careful model design on references to maximize performance gains. As a
result, the issue transitions from being a runtime concern to being a software architecture
problem.

Another consequence and challenge introduced with that kind of granularity is how to
manage deletion of objects. By blindly deleting objects we do not need anymore, we might
as well be leaving dangling references that point to non-existing objects everywhere in the
database. It can introduce a whole new class of bugs and crashes in the application, but
more importantly, it inflates the database size over time as we continually store objects
that are not used and that will never get deleted.

The way I chose to address this problem is to attach an abstract delete method, on
all Database Local Objects, that is left to be defined by every specific database object
implementations of the concrete classes. The implementation of such deletion mecha-
nism is database dependent and involves a few casting operations in non-exposed types
so it has to be hidden under the Hive database implementation layer, written in the
models/stores/hive subdirectory. Therefore, every object is also responsible of delet-
ing all its associated referenced objects upon invocation of its delete method.

18

Development of a Collaborative List Application Lucas Jung

Both the responsibility inversion and abstraction layer allow for great separation of con-
cerns. They keep the user interface code completely separated from this problem. Indeed,
the concrete database stores keep track and manage all the references so as to make sure
one does not end up with links to deleted objects.

Reactivity

We are left with the reactivity challenge: how to ensure the user interface code reacts
and rebuilds widgets when the referenced displayed object properties change? We need a
reactive state management solution, composed of two parts: providers and consumers.

With providers, we are solving two issues at once. First the user interface code never
interacts directly with the database, as it would violate the database abstraction and
separation of concerns. Instead, it always retrieves/consumes data through the corre-
sponding provider. Additionally, this allows for providers to emit new data, effectively
notifying the consumer that the data has changed, and consequently triggering widgets
rebuilds. This approach greatly simplifies the user interface code with a declarative API,
abstracting the complexity behind the provider-consumer interface.

A provider is able to communicate a change to its consumers by using a notification sys-
tem: the database leverages a StreamController<Event<DatabaseObject>> called
an event controller. It is a powerful data structure capable of holding a stream of objects,
called events, that can be consumed at multiple places in the code. Each Database Local
Object has a notify method that adds a new Event to the event controller. Every
provider continuously listens to this stream of events and informs all consumers when it
observes an event in the stream about the provided object.

As this piece of code is common across every provider, we can even modularize and isolate
this functionality itself inside a provider: the objectEventsProvider. Given an object
local uid, its responsibility is to notify the consumers when a new event about the specific
object is emitted in the event controller stream. As every provider can also be a consumer,
all database related providers first subscribe to one or more objectEventsProvider.
All of this allows for a clean and highly readable syntax on the consumer side, isolating
complexity once again where it is makes the most sense.

19

Development of a Collaborative List Application Lucas Jung

Chapter 5

Results

5.1 Overview of the Application
Welcome to Open-Items, let us take a look at the final application and how it works!

Account creation

Upon opening the Open-Items application, your first step is to create an account through
the authentication form:

Figure 5.1: Account creation, authentication form

20

Development of a Collaborative List Application Lucas Jung

Home screen

Once logged in, you will land on the application’s home screen, where you can interact
with your lists:

Figure 5.2: Empty account home screen

Creating a new list

Since you are starting fresh, create your first list by tapping the add (“+”) button at the
bottom right of the screen. Enter the title of your choice in the list creation modal:

Figure 5.3: List creation modal

21

Development of a Collaborative List Application Lucas Jung

Your newly created list now appears on the home screen:

Figure 5.4: New list on home screen

You can change the default list type from the top right “More” menu.

Viewing and interacting with lists

You can now click on your newly created list to view it. To add items, simply tap the
“+” button again. You can add as many items as needed. Mark items as completed by
clicking on the checkbox, which automatically moves them to the end of the list.

Figure 5.5: List view with items

22

Development of a Collaborative List Application Lucas Jung

Customizing lists

Swipe from right to left on any item or list to reveal a deletion button that you can click to
delete the collection. For additional customization, explore the “More” menu by clicking
on the button in the top right corner. From there you can adjust item order, list type,
decide whether completed items should stack at the end or not, and more:

Figure 5.6: List “More” customization menu

Application sidebar

From your home screen you can also tap on the top left icon to reveal the application
sidebar.

Figure 5.7: Accounts application sidebar

23

Development of a Collaborative List Application Lucas Jung

Here, you have control over your account settings. Do you need to manage multiple
aspects of your life or do you want more control over the organization of your lists? By
clicking on the “Add account” button will bring back the authentication page to create
a new account. This is perfect for separating your professional and personal accounts for
example.

5.2 Beta Testing
After finishing the last bit of code for the foundational aspects of the Open-Items flutter
client, I could not wait for actual users to try it out and gather feedback on my work.

I set up a beta testing version of the application once all the absolutely fundamental
functional aspects were working correctly. I provided two ways of trying the application:

• I hosted a static WEB version of the application on GitHub pages. I built the flutter
WEB bundle (with PWA1 support) of the Dart code and pushed it to the gh-pages
branch on the GitHub repository. After configuring the DNS of the Open-Items
domain, and linking it with the GitHub repository, everything was fully functional.

• I also built an Android APK of the application for people to try out a “native”
version and to make sure it was working on a variety of Android devices. I uploaded
the APK on an alpha release of the GitHub repository to host the file and provide
an easy download link for everyone.

The WEB version definitely was the preferred choice, likely due to its versatility across
various devices, ranging from phones to desktop computers, essentially anything that
can launch a WEB browser. However I also got a few people to try the native Android
application, and I received consistent and positive feedback with no notable differences
or issues reported between the two options.

I added the install instructions and a few remarks on the beta testing section2 of GitHub’s
project README. You can actually navigate to the link above if you want more details
about the beta testing or if you want to try it yourself.

5.2.1 Reviews
Here are a few reviews I have gathered from friends and family that have tried the appli-
cation:

• “This software provides a well-rounded service in a straightforward and intuitive
way. The layout is smart and simple but still allows for precis organisation. The
one regret I have is not having more control over the aesthetics of the app, such as
color choice per list for example.”

• “The application works well and is easy to use. The customization of lists is good; it
could be interesting to add other designs for a commercial application.” (translated)

1PWA: https://en.wikipedia.org/wiki/Progressive_web_app
2beta testing section: https://github.com/gruvw/open_items#beta-test

24

https://en.wikipedia.org/wiki/Progressive_web_app
https://github.com/gruvw/open_items#beta-test
https://en.wikipedia.org/wiki/Progressive_web_app
https://github.com/gruvw/open_items#beta-test

Development of a Collaborative List Application Lucas Jung

• “Very cute app, minimalistic in terms of design, very practical for all kinds of notes,
and routine to-do lists. Really like it!” (translated)

• “Fairly instinctive and simple to use, the interface is minimalist but contains all the
necessary information. It is a shame that more features are not implemented; it is
a bit limiting in its usage. Overall, it is usable and nice.” (translated)

Overall the feedback was very positive! It is important to keep in mind that these reviews
are probably highly biased as they come from people who know me well.

Addressing common remarks

• Design personalization - One of the goal of Open-Items was to keep its design as
minimal as possible to avoid distraction, a concept I went through in great details
in Section 3.1 Defining the Design Ideology. I understand that people are used to
being able to customize the look of their interfaces as it is a common feature among
most of the top note taking applications.
Nevertheless, I perceive these cosmetic customization options as more of a potential
distraction, diverting users from their primary objectives and consuming time that
could be more effectively invested elsewhere. After all, you cannot really customize
a traditional piece of paper either, and it has nonetheless demonstrated remarkable
effectiveness, even without it.

• Missing features - A number of users have expressed frustration due to the absence
of certain features in the application. This discontent was primarily caused by the
“Not implemented” dialog, which appeared when attempting to access or use fea-
tures that were still in progress and, consequently, not fully available.
To mitigate this issue, I had diligently documented all the functionalities affected by
this in the beta testing instructions, aiming to prevent users from misinterpreting
them as bugs. Regrettably, it appears that many users did not read through the
entirety of the instructions, leading to continued confusion and annoyances.
I perceived those comments as positive indicators that the development was pro-
gressing in the right direction. It reinforced my confidence in accurately identifying
the use cases that users desire in a list application. It also serves as valuable feedback
that pushes me to prioritize the implementation of these awaited features (more on
that in Section 5.3 Future of Open-Items).

• Text edition - Three testers have also reported that item text edition was initially
unintuitive. To change the text, you first have to click on the item, navigating to
the item’s page, and then click on the text to edit it.
I must admit that having to click twice to edit the item is not ideal. The challenge
is that all the other natural events were already assigned: single click to go to the
item’s page, long click to reorder, and a swiping from right to left reveals the delete
button.
The only remaining alternative was to swipe from left to right to reveal an “edit”
button. However this approach is also not very convenient, and it requires two
actions: a swipe and a click. That is without mentioning that adding another swipe
might cause problems, especially when one has a lot of items on their screen. Indeed,
users could accidentally trigger the swiping action, when they actually intended to
scroll down to reveal lower items.

25

Development of a Collaborative List Application Lucas Jung

5.3 Future of Open-Items
As with most of my projects, the only thing that I would wish for is to have more time. In
fact none of my projects are ever really done, they are just due. This one is no exception.

Open-Items has a bright and wonderful future ahead! All the work I contributed during
this bachelor’s project serves as a solid fundamental basis to grow upon.

A substantial part of my work was to meticulously plan the future features for integra-
tion into the application, and consequently structure the code to better accommodate
their addition. I have thoughtfully included placeholders, ready to be later filled when
integrating the associated functionality.

Let us go through some features planned to be added soon.

Import and export

One important feature is the ability to import and export collections. Users will be able
to export and import data in JSON format. This will provide a standard and convenient
way to save and backup your collections, and later import them back across different
instances of Open-Items , or any Open-Items parser compatible application.

Additionally, a “copy to clipboard” feature will be implemented, allowing users to effi-
ciently export collections for use in other applications.

Search collections

The inclusion of a powerful search functionality is on the horizon, with a focus on fuzzy
finding3. This feature will enhance user experience by enabling quick and flexible searches
within collections, making it easier to locate specific items.

Custom reordering with lexo-ranking

To provide users with more control over their collections, a custom reordering feature will
be introduced. Leveraging lexo-ranking, users will be able to define their preferred order
for items within a collection, offering a personalized and intuitive organization method.

Lexo-ranking proves to be a robust method for arranging items in a list. The mechanism
involves assigning a string property, referred to as the “rank”, to each item in the list. To
establish the correct order, a lexicographical sort is performed by comparing the ranks
of the items (like in a dictionary). When repositioning item A between items B and C,
the process is simplified by updating A’s rank to the average of B’s and C’s ranks: RA =
(RB + RC)/2. Notably, the value of a rank in this context is the base-26 representation
of the rank, with each number character denoted by a letter of the alphabet.

This novel technique proves highly advantageous in the context of ordering synchronized
lists. It facilitates the updating of a single property when repositioning or inserting an
item. In contrast, conventional index-based ranking systems necessitate updating multiple
indices across numerous items, presenting significant challenges when dealing with longer
lists. This challenge is exacerbated when maintaining synchronization across multiple

3fuzzy finding: https://en.wikipedia.org/wiki/Approximate_string_matching

26

https://en.wikipedia.org/wiki/Approximate_string_matching
https://en.wikipedia.org/wiki/Approximate_string_matching
https://en.wikipedia.org/wiki/Approximate_string_matching

Development of a Collaborative List Application Lucas Jung

devices. Having a single update operation allows for a drastic reduction in the number of
network packets required and eliminates most of the server side overhead.

Online synchronization with a backend server

For users who value accessibility across multiple devices, an online synchronization feature
with a backend server is in the pipeline. This will ensure that changes made on one device
reflect seamlessly on others, creating a synchronized and up-to-date user experience. That
feature will also empower users with collaboration functionalities as they will be able to
share their list and manage accesses of different accounts.

Adding this will probably take a considerable amount of work and requires careful planning
and reflection to guarantee a smooth and secure user experience. To achieve this, robust
encryption protocols and secure authentication mechanisms will be integrated to safeguard
user data and maintain privacy. Incorporating collaboration functionalities adds another
layer of complexity. User permissions, access controls, and version tracking are essential
components to enable smooth collaboration without compromising data integrity.

Despite the emphasis on online synchronization, the development will strongly prioritize
an “offline-first” strategy. Recognizing the importance of user accessibility in limited or in
the absence of internet connection, the system will prioritize local persistent storage and
offline capabilities. This ensures seamless interaction, changes, and access to information
even when disconnected from the backend server. When back online, all changes made
offline will be synchronized.

Others

Several other exciting features are in the works, including End-to-End Encryption (E2EE)
for enhanced security, the ability to archive lists, the option to restore deleted lists locally,
and the ability to move and transfer collections from account to account. These additions
aim to further enrich the Open-Items experience, making it an even more versatile and
user-friendly tool for personal and collaborative task management.

27

Development of a Collaborative List Application Lucas Jung

5.4 Conclusion
Open-Items holds a special place in my developer journey, marking a meaningful step
forward. The encouragement from users during beta testing and the helpful feedback I
received are driving forces for the ongoing improvements of the application.

The goals outlined in the project’s initial phase (see Section 1.2 Goals) have been success-
fully achieved in the current version of the Open-Items client. The focus on simplicity,
offline support, Open-Source principles, and cross-platform operability were all imple-
mented, and I am satisfied with the resulting application.

The upcoming features are designed to make Open-Items even more practical and user-
friendly while maintaining the cross-platform availability. Going forward, the emphasis
will remain centered on efficiency and minimalism for both individual and collaborative
task management. It is encouraging to see how Open-Items is becoming a tool that
resonates with users’ needs and embraces the Open-Source philosophy.

As I continue working on enhancing Open-Items, I am eager to explore and implement
innovative solutions that streamline user experiences. I anticipate that each tweak and
addition to Open-Items will not only address immediate needs but also contribute to a
robust and efficient platform.

Moving forward, I am excited about the learning and growth that awaits, recognizing
that every challenge brings valuable lessons and each opportunity propels me further in
my developer journey. The Open-Items project is not just about coding. It is a dynamic
process of shaping a tool that genuinely adds value to users’ lives and hopes to improve
upon existing solutions.

Experience and Key Learnings

Throughout the development of Open-Items, I gained valuable experience and insights
that have contributed to my growth as a software developer. Here are some of my key
learnings from this project:

• Designing a user-friendly and efficient interface requires more than aesthetics. It also
demands a deep understanding of the problem space, user behavior and preferences.
Learning to put into practice an iterative design process on Figma proved to be
essential in refining the Open-Items user interface.

• Striking a delicate balance between simplicity and functionality is an ongoing chal-
lenge. The project underscores the importance of providing powerful features with-
out compromising the application’s accessibility and ease of use.

• The inclusion of placeholders and structural considerations in Open-Items’ code lays
a strong foundation for later extending the project. It should allow for seamless
integration of new functionalities as the application evolves.

28

Development of a Collaborative List Application Lucas Jung

Acknowledgements
The development of Open-Items was made possible through the support and contributions
of several individuals to whom I extend my sincere appreciation:

• Supervisors - I express gratitude to Dr. Jamila Sam and Dr. Barbara Jobstmann for
their guidance. The weekly meetings we had together provided invaluable insights
and a constructive space for addressing challenges and finding solutions.

• Beta Testers - I am grateful to everyone who participated in the beta testing phase.
Their participation, reviews, and constructive feedback played an important role in
refining Open-Items and shaping its user-centric features.

• Special thanks to my partner, Sarah Jabaudon, for her continuous support through-
out the development process. Her feedback on the application (even before beta
testing) and assistance in writing and refining this document were very helpful.

29

Development of a Collaborative List Application Lucas Jung

Appendix A

Design (Figma export)

30

Design 1
D1.1 – Launcher icon

D1.2 – Application bar

D
1.

3
–

O
ut

lin
e

bu
tto

ns

D
1.

4
–

D
el

et
e

bu
tto

n

D1.5 – Text input field

D1.6 – General icons

Design 2

D2.1 – New online account form D2.2 – Online account login form

D2.3 – New offline account form D2.4 – Search page

Design 3

D3.1 – Lists page D3.2 – Side bar

Design 4

D4.1 – Items page D4.2 – Subitems page

Design 5

D5.1 – Confirmation dialog

D5.2 – Cancel dialog

D5.3 – Text input dialog

D5.4 – Selection dialog

D5.5 – Sort dialog

	Introduction
	Understanding the Problem Space
	Survey of Existing Solutions

	Goals
	Walkthrough

	Tooling
	Programming Environment
	Language and Framework
	Used Packages

	Design

	Crafting the User Experience
	Defining the Design Ideology
	Application Logo
	User Interface
	Account Forms
	Collection Pages
	Modals
	Selecting the Right Font

	Code Architecture
	Project Structure
	Models Structure
	Account vs. Account Properties
	Dynamic links and reactivity

	Results
	Overview of the Application
	Beta Testing
	Reviews

	Future of Open-Items
	Conclusion

	Design (Figma export)

