
BA5 IOS Cheat Sheet 1/3 Lucas Jung (@gruvw)

1 CPU virtualization
Process : instance of a program in execution with
memory, data, state

Operation System OS : software layer interfacing
hardware resources and applications,
virtual machine abstracting raw hardware;
protection, isolation, sharing resources, set
of common services; illusionist : private CPU,
private memory

1.1 Processes
Program : passive, code & data, stored in file
on disk, compiled to executable file (CPU
instructions, data)

Process : active/alive, virtual concept, isolated
from others, running a program creates a
process, instance of an executable; unique ID
(PID), memory image (code/data static, stack
and heap dynamic), CPU context (registers,
program counter, current operands, stack
pointer), file descriptors (pointer to open files)

Thread : process can have multiple threads in
same address space

Stack : temporary data (function params, local
vars, return addresses), grows from high to
low address

Heap : dynamic memory allocation, grows from
low to high address

Data : statically known at compile time, global
variables, data structures

Text : read-only text segment, code and
constants

Create process : loading (code and data),
memory allocation (heap and stack),
initialization (tasks related to IO), ready
(transfer CPU control at program entry point)

Time sharing : one task at a time, quickly
switching among other tasks

Space sharing : task gets a portion of available
space

CPU virtualization : process illusion of exclusive
CPU access, CPU is a shared resource among
all processes

OS scheduler : keep list of processes and their
state (process control block), picks the
process to run according to scheduling policy

Process state transition : Running (scheduled),
Ready (descheduled), Blocked (IO)

Process control block : PID, process
state/context, pointers to parent process, CPU
context, pointer to address space, IO status
info, pointer to list of open files

Process API : fork executes a child process (child
different PID, copy of parent process), exec
executes new program (replaces the memory,
same PID), exit terminates process (parent
exits before child > orphan process adopted
by init (PID 1) > die),wait blocks current
process until one of the child terminates

(returns the child PID)
Shell : interactive user interface with the OS
1.2 Process abstraction and API
CPU virtualization : each process illusion of
exclusive CPU access when it is shared
resource to all processes

Trust : OS is trusted with full access to all
hardware capabilities, all other programs
are untrusted (restricted rights, disabled
dangerous operations)

Limited direct execution : basic technique,
execute program as fast as possible with some
restrictions; problems : restricted operations
(how not to execute privileged code), control
process execution on CPU (how to pause/stop)

Hardware help : use protection rings to
distinguish execution modes, ring 0 kernel
mode (most privileged), ring 3 user mode
(least privileged)

Requesting OS services : system call API, transfer
execution to OS, meanwhile execution of
process suspended

System calls : create/destroy processes, access
file system, communicate to other processes,
allocate memory; more than 300 in Linux

System calls execution : process executes
special trap instruction (exceptions), saves
registers to per-process stack, CPU jumps
to kernel mode and raises privilege level
to ring 0, when finished OS calls special
return-from-trap instruction and lower
privilege to ring 3, restore registers ; handle
internal program errors (division by zero,
overflow, access not allowed to memory
region), produced by the CPU while executing
instructions, synchronous CPU invokes only
after terminating the instruction

Configure at boot time : OS tells hardware
specific handles to use when certain events
occur (system call), trap table and entries,
system call numbers (process specifies in
stack or register)

Interrupts : asynchronous (signals to CPU
external event), hardware provides signaling
mechanisms for OS to regain control, suspend
user process and switch to kernel mode
(context switch), execute appropriate
interrupt handling code, restores user process

OS control : OS configures timer interrupt,
every certain of millisconds, OS can decide
which process to execute; nested interrupts :
hardware instructions to delay (disable)
interrupts and re-enable when safe

1.3 Scheduling
OS Scheduler : stop running process and
start another one, policy - how to pick the
next, non-preemptive (switch if process
blocked), preemptive (switch event event if
can continue)

Context switch : kernel mode, cannot go back
to same proc. (terminate proc., system
call), do not want to go back to same proc.
(proc. run for too long, other proc.s should
be scheduled) ; stop running proc. to start
another, store proc. state in Process Control
Block PCB

Context switch procedure : save running proc.
state, select next thread, restore execution
state of next proc., passes control (return from
trap)

Idle process : all proc.s are blocked, low priority
idle proc., never blocks or exec. IO, always at
least one process to run

Assumptions : each job runs for same amount of
time, jobs arrive at same time (Ta = 0), once
job started it will finish, all jobs only use CPU
(no IO), run-time of jobs in known, single CPU

Utilization : fraction of time CPU executes a job
(goal to max.)

Turnaround time : total time from job arrival
Ta to job completion Tc (goal to min.),
Tta = Tc − Ta

Response time : how long it takes until job
scheduled, firstrun time Tf , Tr = Tf − Ta

IO awareness : usually IO slow (milliseconds),
scheduler incorporate IO, schedule another
job during IO, better CPU utilization

First In First Out FIFO : non-preemptive,
challenged by long running tasks (long
jobs delay short jobs, long turnaround
times), convoy effect (many short potential
get queued behind one heavyweight
requirement), bad response time

Shortest Job First SJF : non-preemptive,
challenges come if you start a long job right
before a short job come in (convoy effect), bad
response time

Shortest time to completion first STCF :
preemptive, when new job enters select the
one with least time left, prioritize short jobs,
bad response time

Round Robin RR : preemptive, run job for fixed
interval (or time-slice) then go next in queue,
responsiveness increases turnaround (for
equally long tasks)

Multi-Level Feedback Queue MLFQ : preemptive,
support general purpose scheduling, batch
process (response time does not matter,
cares for long run times), interactive process
(critical response time, short bursts), first
optimizes turnaround time (important for
batch process), thenmini. response time
(better interactivity) ; use past behavior as
futur predictor, multi. lvl. of RR, each level
has higher priority, process at higher level
scheduled first, high levels have short times
slices, lower level run longer

MLFQ rules : run high priority first (if equal, run
first), process start at top priority, if A uses full
time slice lower its priority, periodically move
jobs to topmost queue

2 Memory Virtualization
Address : location of a byte in memory, byte
addressable

Address space : abstraction, set of addresses
accessible to a program, static (code, globals)
dynamic (stack, heap)

Dynamic memory : amount mem. required
depend on program, input size unknown at
compile time, recursive function calls

Stack : First In Last Out FILO, push (add elem.)
pop (take elem. out), reversed of insertion
order, one per thread/proc.

Invocation Frames : store local variables and
context to run function (callee), compiler does
it ; on stack (simple, sequence of active parent
frames), allocated in func. prologue + freed
when return

Heap : randomly allocatedmem. objects,
statically unknown size or allocation patterns,
lifetime/size unknown, alloc creates, free
destroy

Strawman : pre-allocate mem. region (4KB),
alloc returns start address of free region +
increment used size; + simple, - no reuse &
will run out of mem.

Free list : abstract head into list of free blocks,
track free space, list available mem. obj. and
size, alloc split free block and put remaining
to free list, free add block to free list

Better implementation : alloc find fitting obj.,
first fit (first object in list), best fit (closest to
size), worst fit (largest object) ; free merge
adjacent blocks

OS interaction : OS give proc. large mem. region
(sbrk, mmap syscalls to allocate mem.),
runtime library manages mem. region (libc),
allocators are critical for memory allocation
(perf. reliability security)

Memory virtualization : enables isolation
(requires separation), proc. prohibited to
access mem/registers from others proc.

Uniprogramming : one program at a time on one
machine, OS and program present in physical
memory, no abstraction (physical addr.), no
isolation

Multiprogramming : time-sharing OS, many
program loadmem. simultaneous;
transparency (agnostic of physical
mem./other mem. proc.), protection (not
corrupt other proc.), efficiency (perf.s, no
waste memory : fragmentation), sharing (proc.
may share parts of mem.)

Virtual memory : virtual address space, address

space of proc. starts at 0x0, map virt. addr. to
physical addr.

Time sharing mem. : save mem. to disk in
context switch; + better space saving, - bad
perf.s (due to IO)

Static relocation : relocate program to assigned
area, compile code with PC-relative addr.,
adjust pointers in code/globals section,
only one addr. space, no physical/virtual
space separation, - no separation & adjusted
overhead & bugs in proc. crashes other
proc./OS

Dynamic relocation : hardware mechanism,
translate mem. addr. from program viewpoint
to hardware view, interposition hardware
intercepts mem. access dynamically translate
from Virtual Address VA to Physical Address PA

Indirection : intermediate layer to access or
manipulate data/resources, batching (group
operations to amortize cost), caching (store
data locally for faster access)

Memory Management Unit MMU : hardware
translate VA to PA, OS configures MMU (ring
0), special instructions for config., exceptions
results in trap switching to ring 0

Base register : simple MMU, translate VA to PA
by adding offset, store offset in special "base"
register (OS controlled), each proc. has diff.
offset, not secure

Base and Bounds : keep two values, base
(minimum addr.), bounds register sets virtual
limit of address space (highest physical), CPU
checks if in bounds (return physical addr.) or
throw exception (seg. fault) ; + secure (isolate)
& performant, - no mem. sharing & waste of
physical mem. (pre-allocate) fragmentation

Fragmentation : inefficient use of storage space,
internal fragmentation - allocatedmem. larger
than requested (intra-process), external
fragmentation - total mem. space satisfy
requestedmem. but not contiguous (process
wide)

MMU segmentation : one base and bound per
memory area (registers : code segment
CS, data segment DS, stack segment SS,
user-defined ES FS GS), allow proc. several
continuous mem. regions, OS segments
independently anywhere in physical mem.,
minimize mem. waste, sharing (segmentation
introduces protection bits, read write execute)
- code segment read & execute, share code
segment with other proc., reduced external
fragmentation; issues : segment backed by
physical memory, external fragmentation still
happens (heap, stack large enough)

2.1 Paging
Paging : eliminate requirement of contiguous
physical memory for allocation (+no external
fragmentation, fast to allocate), divide address

BA5 IOS Cheat Sheet 2/3 Lucas Jung (@gruvw)

space into fixed size chucks (pages) ;- internal
fragmentation, space to store translation,
additional memory redirection

Page : minimal unit of address space, virtual
page (process context), physical mem. divided
into array of fixed-sized page frames, each
page fram contain single virtual memory page,
pages should be small enough (mini. internal
fragmentation) 1-16 KiB, virtual address
contiguous (not physical), translation in page
table

Virtual address : virtual page number (select the
page amont 2̂l pages) + offset (location in page
among 2̂l bytes)

Address translation : MMU, virtual page number
HW translation to frame number, keep page
offset

Page table : virtual-to-physical addr. translations
(page table entries PTE, page frame number
PFN), every process has one page table
(in memory, managed by OS), pointer to
page-table stored in special register (PTBR),
saved restored by PCB in context switch;
present bit (valid translation), protection
bits (permissions), dirty bit (page modified),
access/reference bit (tracks page popularity)

Linear page tables : use a lot of memory, need
bigger pages (large internal fragmentation) or
multi-level paging

Multi-level page tables : one or more indirection
levels allow space efficient encoding, each
level addmemory lookup address translation

Translation look aside buffer TLB : cache of
recent virtual addr. translations, TLB hit/miss,
miss expensive, locality of reference helps,
may become invalid (context switch)

Swapping : main memory is not enough for all
processes, store unused pages on disk, OS
can reclaimmemory, over-provision (hand
out more memory than physically available),
present bit in MMU (if not trigger page fault,
OS takes over)

3 Concurrency
Concurrency : managing multiple tasks with a
single processing unit

Parallelism : performing multiple (part of a) tasks
using multiple processing units

Threads : execution contexts expressing
opportunities for concurrency (mask IO
latency, prioritize threads) and parallelism
(multiple CPU), share address space and data

Threads issue : threads interleaving -
uncontrolled scheduling of threads on shared
memory (non-deterministic behavior)

Race condition : timing or order of events affects
the correctness of the program

Data race : when one thread accesses mutable
variable whine another is writing to it without
synchronization

Critical section : code portion that access shared
region concurrently

Mutual exclusion : only one thread execute the
critical section at any point (others wait)

Locks : mechanism used to ensure atomicity via
mutual exclusion, one shared lock per critical
section, one thread acquires (hold) the lock,
others wait for release

Interruptible lock : turn off interrupts in critical
section, no hardware interrupt, no scheduler,
used in single-processor systems; + simple; -
privileged operations, no support for multiple
locks, single processor, starvation, lose
hardware interrupts

(Faulty spin lock) : use shared variable, simple
loads and stores; violates mutual exclusion
property

Test-and-set lock : hardware supports atomicity,
test the old value and simultaneously
setting memory to a new value; unfair lock,
starvation

Compare-and-swap lock : write a new value if
the old one is the same as expected; same
behavior as test-and-set

Spinning locks : busy-waiting problem (spin
when waiting), waste CPU cycles; mutex -
waiters (park) go to sleep and lock holder
wakes up the waiters to release (waiting
queue), ensure fairness

Condition variable CV : concurrency primitive,
allows threads to wait for certain condition
before proceeding; a thread waits on
condition (waiting queue), another thread
signals ; API - wait(c) waits condition, signal(c)
wake up one waiting thread, broadcast(c)
wake up all

Semaphore : similar to condition variable,
object with integer value; API - sem_init(s,
v) initialize, sem_wait(s) wait for available
slot, sem_post(s) increments slot by 1;
semaphore with value 1 acts as spinlock,
binary semaphore acts as mutex (value 0)

Atomicity violation bugs : sequence of
operations intended to execute atomically
are interrupted, unexpected states; sol. : use a
common lock between threads

Order violation bugs : expected sequence of
operations not followed, incorrect program
behavior ; sol. : use a CV to signal

Deadlock : two or more processes unable
to proceed, each one waiting for other to
release; sol. : impose total ordering + obtain
all resources or nothing at once

4 Persistence
Bus : common single set of wires for
communication among hardware devices

Canonical device : controller with device
registers (status, cmd, data), device internals ;
CPU interacts with device controller (write
device registers), device controller signals CPU
throughmemory polling or interrupt

Device protocol : wait until device ready, set
data and command, wait until command
completed

Port-mapped IO : CPU uses designated IO
ports, each device has assigned port, special
instructions to communicate

Memory-mapped IO : CPU uses load/store
instructions, hardware maps control registers
to physical address space; high performance

Data granularity : single byte at a time
(keyboard) ; whole blocks (disks, NICs)

Access pattern : sequential access (tape), random
access (disks, CD) some overhead

IO interrupt : generates interrupt whenever it
needs service; +handles unpredictable events
well ; -high overhead

Polling (spinning) : OS periodically checks a
device status register ; +low overhead, -waste
CPU cycles

Coalescing batching : device waits for some time
until more requests complete, batches all
responses and send everything

Programmed IO : CPU tells device what data
is, one instruction for each byte/word,
efficient for few bytes, consumes CPU cycles
proportional to data size

Direct Memory Access DMA : CPU tells device
where data is, controller access to memory
bus, transfer data to/frommemory directly,
efficient for large data transfers

Device drivers : specialized pieces of code in
kernel interacts directly with device, standard
internal interface, same kernel IO system
call interact easily with different device
drivers ; top half accessed in call paths from
system calls (open/close/read), bottom half
communicates with the device; example of
encapsulation (same API), OS implements
support for API based on device class

Disk latency : seek time + rotation time + transfer
time

Disk scheduling : how should OS schedule IO
requests to minimize seek time, relative
position between requested and disk head
matters more than length of transfer

Redundant Array of Inexpensive Disks 0 RAID :
file is striped across disks, no redundancy of
data (no fault tolerance), best performance
(cumulative bandwidth utilization), total
capacity is sum of capacities, no data security,
reduced reliability (more disks > higher prob.
of fail)

RAID 1 : Duplicate file blocks, deals with disk loss,
does not handle corruption, total capacity is
capacity of 1 disk, reads can be parallelized,
writes are equivalent to one disk, expensive,
critical infrastructure (sensitive information)

RAID 5 : parity (fault tolerance), if one disk fails,
one can reconstruct its data by XOR-ing
all remaining drives, reliable, fast (very
fast reads), writes become complicated,
affordable, data-center environments

RAID combinations : RAID 01 - two disk on RAID
0 that are mirrored RAID 1; RAID 10 - two
mirrored disk on RAID 1 that are used with
RAID 0

4.1 File System
Purpose : given set of persistent blocks, manage
these blocks efficiently (non-volatile storage,
organize files metadata and permissions)

IO abstraction stack : layered abstractions
- cache blocks (recently read from disks),
buffers recently read, Block device interface
single interface to many devices, data
read/write fixed size blocks, Device Driver
translate OS abstractions to hw specific IO
device details, MM IO DMA interrupts controls
registers

File system abstraction : need for long-term
information storage (outlive program),
support concurrent accesses, persistent
named data, files & directories

File : named collection of related information
recorded in secondary storage, linear
persistent array of bytes; data, user or
application puts in it ; metadata information
added andmanaged by the OS, OS/FS does
not care or understand content

File abstraction : inode and device number
(persistent ID), file name (human readable),
file descriptor (process view)

OS view : inode - Low-level unique (per FS not
global) ID assigned to file by FS, metadata of
file, each file has exactly one associated inode,
inodes recycled after deletion, multiple file
names canmap to same inode (hard links)

Inode table : storage space split between inode
table & data storage, files statically allocated,
require inode number to access file content

File name : URL, local, remote, directory;
untyped files (array of bytes)

Directory : special file stores path to inode
mapping, mark if a file maps to regular
file; links - file pointers (don’t contain data)
reference another file, hardlink - maps file
path to file inode number (mirror copy of
original file, same inode number as original
file), symbolic (soft) link - maps file path to
different file path (actual link to original file,
new inode number allocated)

File descriptor : do expensive tree traversal

once, store final inode/device number in
per-process table

Permissions : bits - rwx, owner group, others
File system API : create - open path flags
permissions (returns file descriptor fd),
close - close fd, read - read fd *buff count,
write - write fd *buff count (return # bytes
r/w), manage file offset - lseek fd offset
whence (repositions file offset), unlink delete
- unlink pathname, synch write - fsync fd, get
metadata - fstat fd *statbuf

Multiple file systems : FS mapped anywhere
into a single tree, any directory can bemount
point ; mount allows multiple FS onmultiple
volumes form a single logical hierarchy

FS implementation : given large set of N blocks,
need data structures to encode file hierarchy
andmetadata; overhead (metadata vs data
size) should be low, internal fragmentation
should be low, efficient access of content
(external fragmentation, #metadata access),
API

File system layout : FS stored on disks, divided
into partitions, sector 0 of disk master boot
record MBR (bootstrap code, partition table),
first block of each partition has boot block

FS superblock : one per FS, metadata about FS,
inodes, # data blocks, where inode table
begins, info. to manage free inodes/data
blocks, read first onmount

Contiguous file allocation : all data blocks of
each file allocated contiguously; + simple,
efficient ; - fragmentation (large external frag.),
usability (know file size on craetion)

Linked blocks file allocation : each file is linked
list of blocks, first word of each block points
to next block (rest is data) ; + space utilization,
simple; - performance (random access slow),
implementation (mix data andmetadata),
overhead

File allocation table FAT : decouple data and
metadata, linked list information in single
table (all pointers in central table) ; + space
utilization (no external fragmentation),
simple; - performance, overhead (limited
metadata)

Multi-level indexed : tree of pointers ; file is fixed
asymmetric tree, fixed sized data blocks (4KB),
root of tree is file’s inode (metadata, set of
15 pointers, first 12 to data blocks, 13 to
block containing pointers to data block, 14
double indirect, 15 tripple indirect) ; efficient
in finding blocks, efficient in sequential reads,
simple to implement, supports large files
and small files (small overhead); + space
utilization (no external fragmentation), simple,
performance (low seek cost) ; - overhead
(lowmetadata overhead extra reads indirect

BA5 IOS Cheat Sheet 3/3 Lucas Jung (@gruvw)

access)
Directories : special files, set of data blocks
mapping file names to inode number; root
directory has inode number 2

Performance : number of I/O, speed of I/O,
impact on one program, impact on all
programs; latency, throughput, I/O operations
per sec IOPS

Improve performance : caching - avoid
unnecessary operations; batching - group
operations to increase throughput (perhaps
at expense of latency), delay idempotent
operations; add a level of indirection -
convenient abstraction

File system buffer cache : block cache, OS reads
block of inodemany times; map inode, block
offset to page frame number, read returns
without performing disk I/O; may use all
unusedmemory

Batching : perform fewer operations with larger
transfers, possible for consecutive blocks
belonging to same inode (disk fragmentation
metric)

Delaying : delay write operations, perform
them asynchronously, reorder operations
to maximize throughput; - content lost if OS
crashes; write-back caches (delay writes, -
potential inconsistency), write through caches
(write synchronously, - slow)

Crash consistency : atomically move FS state
from one consistent state to another

File system checker FSCK : after certain number
of mount operations or after crash, check
consistency; hundreds of consistency checks
(superblock, FS size, link count equal to
directory entries) ; slow and can take hours
(scan full disk)

Journaling : limit the amount of work required
after crash, get correct state (not just
consistent state) ; multiple disk updates into
single disk write, write ahead (short note to a
log "journal" with changes about to be made
to FS data structures), if crash occurs, consult
the log; no need to scan the entire disk

Transactions : set of actions grouped together;
Atomic (all or nothing happen), Consistent
(from one correct state to another), Isolated
(transactions do not interfere), Durable (on
completion, effects persistent)

Log structured FS : use entire disk as a log, buffer
all updates (including metadata) in-memory,
when segment is full, write to disk in long
sequential transfer to unused part of disk,
never overwrite existing data

	CPU virtualization
	Processes
	Process abstraction and API
	Scheduling

	Memory Virtualization
	Paging

	Concurrency
	Persistence
	File System

