
BA4 - Machine Learning Cheat Sheet 1/2 Lucas Jung

1 Basics
Improve learning over time, autonomous,
feeding data, optimization problem

x : feature vec.,w : model parameters, t : (true)
label, y : predictor,L : loss func.,E : err. func.

Classification : discrete or categorical output
Regression : numerical or continuous output
Supervised Classification : minimize
E(w) =

∑N
n=1 L(y(xn;w), tn)

Training Testing : 1 use annotated training set to
learn, 2 test set to measure performance (both
must have same statistical distribution)

1D Model :−1 if observed< T (threshold), 1
otherwise, 2D Model : 2 observed, 2d graph,
find decision boundary line between pt.s

Overfit : good train, bad test
Underfit : bad train, bad test
1.1 Python
High-level, readable and concise code, fast
prototyping, interpreted, dynamic typing

Slow run-time (dynamic typing, memory
management,), modules (NumPy, SciPy,)

2 K Nearest Neighbors
2.1 Nearest Neighbors
Sensitive : pt. close to outlier misclassified
Simplest algorithm : classify new x according to
label of nearest nehbr. in training set

2D Voronoi Diagram : given {xn}1≤n≤N

training samples, Voronoi cells :Cn = {x ∈
X | ∀j ̸= n, d(x, xn) ≤ d(x, xj)}, Voronoi
diagram : V = {Cn}1≤n≤N , decision
boundary : select edges of Voronoi Diagram

2.2 K Nearest Neighbors
Classify according to majority of labels in k
nearest nehbr.s

Test data not used during training, misclassifying
pt.s near the decision boundary, single
meta-parameter k, smaller k greater
overfitting, More nehbr.s : + coverage, fewer
nehbr.s : better accuracy, undefined zone
(same # of neighbors, k even)

Limitations : performance (load all training data,
distances to all training samples), distance
metric (problematic in high dim.s and with
noisy features), curse of dim.ality

Distances : euclidean : d2(x, x′) =√∑D
d=1(xi − x′i)

2, Manhattan : d1(x, x′) =∑D
d=1 |xi − x′i|

Cross Validation : split train. set into real
training set & valid. set, choose kminimize
classification error on valid. set

Run K-NN for many k, use only training and valid.
set, pick best k (highest accuracy on valid. set)

Polynomial curve fitting : y =
∑M

j=0 wjx
j ,

findw = [w0, . . . , wM] curve closest :∑
n(y(xn,w)− tn)2

Imbalanced Training set : better represented

class favored (fraud/spam detect.) ; sol.s :
weight nehbr.s by inverse of their class size,
under-sampling dominant class, augmenting
other classes generating synthetic examples

Condensed Nearest nehbr.s : reduce nb. of pt.s,
replace pt.s by prototypes : take pt.s that are
mislabeled using pt.s already taken, faster

Gossip Based computing : highly parallel, creates
a rand. graph, robust to churn partition and
breakdowns, adapted to P2P networks

3 KMeans
Unsupervised learning : training set not
annotated, system learns classes

Clustering : identify groups without data
transformation

3.1 K-Means clustering
Group samples into k clusters (no labels
required), k given, works for well defined
clusters (& homogenous data)

Cluster k : pt.s {xik1 , . . . , xiknk
}, µk : center of

gravity, mean µ = 1
N

∑N
i=1 xi ∈ RD

Minimize :
∑K

k=1

∑nk

j=1(xikj − µk)
2 ; init.

(param.s) µ1≤i≤K rand.ly, assign pt. xi to
nearest center µk , update center µk given pt.s
assigned

Stop : fixed nb. iter.s, iter till convergence
(guaranteed, not always to best sol.), diff. in
center locations is small

Initial conditions : sensitive to initial conditions,
try several diff. rand. init., keep best res.

Inhomogeneous data : euclidean dist. not always
best, dim. may have diff. magnitudes, encode
diff. types of info. ; Sol.s : scale each dim.
(subtract smallest val. and scale [0, 1]), use
diff. metric (Manhattan)

Compactness : pt.s close to center of their cluster
Connectivity : pt.s of same cluster are close to
one another

Spectral clustering : graph-based connectivity,
cut graph on weak connections, similarity

Wij = exp
(

−∥xi−xj∥2

σ2

)
(σ hyper-param.),

cost (to minimize) cut(A,B) =∑
i∈A,j∈B Wij , degree of node di =∑
j Wij , volume vol(A) =

∑
i∈A di

Normilized cut : sol. favor imbalanced partitions,
Ncut(A,B) =

cut(A,B)
vol(A)

+
cut(A,B)

vol(B)

Relaxation : normalized cut≈ eigenvalue
problem (D − W)y = λDy, (D − W)
graph Laplacian, sol. is eigenvec. with second
smallest eigenvalue (+ val. : pt. belong to
partition,− : doesn’t belong)

K-way partition : more than 2 clusters :
recursively apply 2-way partitioning
(inefficient, unstable), useK eigenvec.s (pt.
repr. asK-dim. vec., applyK-means toN

vec.s, dim.ality reduction)
4 Linear Regression
Predict a continuous val., requires deriv. w.r.tw
1D Linear regression : param.sw0, w1,N
training pairs {(xi, ti)}, yi = w0 + w1xi
close to ti (true val.)

Training : squared euclidean d2(yi, ti) = (yi −
ti)

2, least-squares min
w0,w1

1
N

∑N
i=1 d

2(yi, ti)

Prediction : yt = w∗
0 + w∗

1xt

HyperPlane fitting : in dim.D, y = w0 +w1x1 +
. . . + wDxD = wT [1 x1 . . . xD]T =
wT x, x ∈ RD+1 ; sol. gradient descent or
closed-form sol.

Closed-form solution : E (error func.)∇wE(w) =
0,X = [xT1 . . . xTN]T , t = [t1 . . . tn]T ,
w∗ = (XT X)−1XT t = X†t,X†

Moore-Penrose pseudo-inverse
Prediction : yt = (w∗)T [1 xt]
Evaluation metrics : Mean Squared Error (MSE)

MSE = 1
Nt

∑Nt
i=1(yi − ti)

2, Mean
Absolute Error (MAE) (|yi− ti|), Mean Absolute
Percentage Error (MAPE) (yi−ti

ti
), Root Mean

Squared Error (RMSE)
√

MSE
4.1 Linear classification
Find w̃ s.t. w̃ · x̃ is> 0 for+ samples,< 0
for most− samples; can’t favor one sol.
over infinitely others, no close and far from
boundary

Line : (u, v) ∈ R2, au+ bv+ c = 0, normalized :
a2 + b2 = 1

Normal unit vec. : n = 1√
a2+b2

[a, b]

Signed dist. to line :P = [u1, v1],O = [u0, v0]
on line, h = n[u1 − u0, v1 − v0] =
(au1 + bv1 + c) ; h : 0 (on line),> 0 on
one side,< 0 on other side

Signed dist. N dim. : x ∈ Rn,
x̃ = [1, x1, . . . , xn], w̃ =

[w0, w1, . . . , wN],
∑N

i=1 w
2
i = 1,

hyperplane : w̃ · x̃ = 0, h = w̃ · x̃
Perceptron : min.E(w̃) = −

∑N
n=1 sgn(w̃ ·

x̃n)tn ; set w̃1 = 0, pick rnd. idx. n, x̃n
misclassified : w̃t+1 = w̃t + tnx̃n

Test : y(x; w̃) = 1 if w̃ · x̃ ≥ 0, -1 otherwise
Convergence Theorem : ∃γ > 0 (margin) &

w∗ & ∥w∗∥ = 1 s.t. ∀n, tn(w∗ · xn) >
γ =⇒ Perceptronmakes≤ R2

γ2 errors,
R = maxn ∥xn∥

5 Logistic Regression
Logisitc Regression : y(x; w̃) = σ(w̃ · x̃),
yn = y(xn; w̃), min. cross entropyE(w̃) =
−

∑
n(tn ln yn + (1 − tn) ln(1− yn))

(convex),∇E(w̃) =
∑

n(yn − tn)x̃n, find
max. likelihood sol.

Sigmoid : σ(a) = 1
1+exp(−a)

, σ′ = σ(1 − σ),
infin. differentiable, easy derivative,

asymptotically 0 or 1
Interpretation : y(x; w̃) : prob. that x belongs to
one class or the other (0.5 on boundary)

Outliers : margin can be+ important

,
Linear discriminant :K linear classifiers
yk(x) = w̃k · x̃, boundaries : yk(x) =
yl(x) ⇐⇒ (w̃k − w̃l) · x̃ = 0, regions are
convex

Mulit-Class linear : yk(x) = w̃k · x̃ = wT
k x,

assign x to class k if yk(x) > yl(x) ∀l ̸= k,
k = arg maxj y

k(x), same properties as
binary logistic regression

Multi-Class Cross Entropy : tkn ∈ {0, 1}
is prob. xn in class k, prob. x in class

k : yk(x) =
exp

(
ak(x)

)
∑

j exp(aj(x))
, entropy

E(w̃1, . . . , w̃k) = −
∑

n

∑
k t

k
n ln

(
yk(xn)

)
,

∇Ewj =
∑

n(y
k(xn)−tkn)xn, ak(x) = w̃T

k x
6 Max Margin Classifiers
Larger margin, trade train. mistakes for test. acc.
Signed distance :w, x ∈ RN , x̃ = [1∥x], w̃ =

[w0∥w], w̃′ = w̃/∥w∥ ; hyperplane : w̃ · x̃ = 0,
sgn. dist. : w̃′ · x̃, invariant to λw̃

Max. Margin Classifier : tn ∈ {−1, 1},
{(xn, tn)1≤n≤N}, ∀n tn(w̃n · x̃n) ≥ 0,
unsigned dist. : dn = tn(w̃ · x̃n)/∥w∥, max. :
w̃∗ = arg maxw̃ minn dn

Linear support vector machine SVM :minn dn =
1/∥w∥,w∗ = arg minw ∥w∥2/2 s.t.
∀n tn · (w̃ · x̃n) ≥ 1

Slack Variables : allow some training pt.s
to be misclassified, ξn for each sample,
tn · (w̃ · x̃n) ≥ 1 − ξn, ξn ≥ 0weakens
constraint ; 0 < ξn ≤ 1 sample n inside
margin but correctly classified, ξn ≥ 1 sample
nmisclassified

Formulation Polynomial SVM :w∗ =
arg min(w,{ξn}) ∥w∥2/2 + C

∑N
n=1 ξn,

∀n tn · (w̃ · x̃n) ≥ 1− ξn, ξn ≥ 0,C constant
(cost of constraint violations)

7 AdaBoost
Strong classifier as weighted sum of weak ones,
Y (x) = sign(

∑T
t=1 αtyt(x))

Algorithm : init. data weights ∀nw1
n = 1/N ;

for t ∈ [1, . . . , T] : find classifier yt
minimizing weighted error

∑
tn ̸=yt(xn) w

t
n,

evaluated : ϵt =

∑
tn ̸=yt(xn) wt

n∑N
n=1 wt

n
&

αt = log
(

1−ϵt
ϵt

)
, update weights

wt+1
n = wt

n exp(αt1(tn ̸= yt(x)))

Training testing errors : ϵt < 0.5 (better
than chance) training error exponentially
decrease, 1/N

∑
n 1[tn ̸= h(xn)] <∏T

t=1

√
ϵt(1− ϵt)

8 Polynomial Support Vector Machines
Map data to higher dimension, use linear
classifier ; increases dimensionality of prob.,
computationally complex, too complex for
large dataset, higher dimensions (irregular
boundaries, noise sensitive), more accurate
than KNN (param.s must well chosen)

Polynomial Approximation :w = [w0, . . . , wM],
∀x f(x) ≈ wix

i, least squaresw∗ =

arg minw
∑

n(tn −
∑M

i=0 wix
i
n)

2,
fM (x) =

∑M
i=0 w

∗
i x

i

Feature expansion : ϕ(x) = [1 x x2 . . . xM],
f(x) = wTϕ(x)

least squares :w∗ = arg minw
∑

n(tn −
wTϕ(xn))2 = arg minw ∥Φw − t∥2,Φ =
[ϕ(x1)T , . . . , ϕ(xN)T], t = [t0, . . . , tN]

Regularization : weight decay : tend weight
to decay to 0, discourages quick variations,
w∗ = arg minw ∥Φw − t∥2 + λ

2
∥w∥2

Feature expansion FE : ϕ : Rd → RD ,
y(x) = σ(wTϕ(x) + w0)

Polynomial FE : d-Dimensional, ϕ(x) column vec.
(every possible monomials)

Polynomial SVM : ∀n tn(w̃ · ϕ(xn)) ≥
1− ξn, ξn ≥ 0

Percentage of separab. partitions :N dimension
of space, p : number of samples, C(p,N)

2p
,

separable with largeN when p < 2N
Lagrangian Formulation : constrained
minimization,L(w,Λ) = 1

2
∥w∥2 −∑N

n=1 λn(tnw̃ · ϕ(xn) − 1),Λ =
[λ1, . . . , λn]

Support Vectors : k(x, x′) = ϕ(x)Tϕ(x′),
w =

∑N
n=1 λntnϕ(xn), y(x) =∑N

n=1 λntnk(x, xn)+b ; λn non zero only for
subset of data pts., xn support vectors satisfy
tny(xn) = 1, only consider support vectors
at test time; λn < C xn lies onmargin,
λn = C xn inside margin, largeC minimizes
number of miscalss. train. pt.s

Inference Time : y(x) =
∑N

n=1 λntnk(x, xn) +
b, f(x) not explicit anymore, k(. . .) is a
similarity measure; Kernel trick : ϕ implicit
(never computed), only need compute k

Kernel : polynomial kernels (small to high dim.)
1+(xT x′)d, Gaussian kernels (small to infinite
dim., stillO(N3)) exp

(
−∥x − x′∥2/σ2

)
9 Optimization
Convex func. have a global min., find using first
or second (faster) order deriv., non-convex
usually yield a local min.

BA4 - Machine Learning Cheat Sheet 2/2 Lucas Jung

Partial derivative : ∂f
∂xd

=

lim∆x→0
f(...,xd+∆x,...)−f(...,xd,...)

∆x

Gradient :∇f = [∂f
∂x1

, . . . , ∂f
∂xD

], direction
of greatest increase at x, magnitude is rate of
increase, 0 at stationary pt.s (minima, maxima,
saddle pt.s)

Gradient descent : init. x0 randomly, update
xk = xk−1 − η∇f(xk−1), η step size
(learning rate)

Conjugate gradient : faster convergence,
weighted average previous search directions;
start x0, g0 = ∇F (x0) ; take k from 0 to
n − 1 : findαk minimizing f(xk + αkgk),
xk+1 = xk + αkgk , β =

∥∇f(xk+1)∥2

∥∇f(xk)∥2
,

gk+1 = −∇f(xk+1) + βkgk ; x0 = xn, loop

Constrained optimization :minx f(x), subject to
fi(x) ≤ 0 (i = 1, . . . ,M), hi(x) = 0 (i =
1, . . . , P)

Implicit func. theorem : min. f(x, y) subject to
g(x, y) ≤ c, at constrainedmin. ∃λ ∈ R s.t.
∇f = λ∇g, λ Lagrangemultiplier

Lagrangian :L(x, λ, ν) = f(x) +∑M
i=1 λifi(x) +

∑P
i=1 νihi(x), λi Lagrange

mult. for fi(x) ≤ 0, νi Lagrangemult. for
hi(x) = 0 ; at min.∇xL = ∇λL = ∇νL = 0

Lagrange dual func. : g(λ, ν) = infxL(x, λ, ν),
concave func., single maximum, lower bound
to optimal f∗ : λ ≥ 0 =⇒ g(λ, ν) ≤ f∗

for any (λ, ν), maxi. g, constrained to
unconstrained

10 Forests
10.1 Trees
Training : compute pl(c) samples proportion in
each class landing in leaf l

Testing : probability of belonging to class c
p(c|ν) = pl(c) if lands in leaf l

Weak learners : h(ν, θ), oriented line [τ1 >
ϕ(v) · ψ > τ2], ϕ(v) = (x1 x2 1)T

Entropy : Gini indexQ(S) =
∑K

k=1 p
k(1− pk),

entropyQ(S) = −
∑K

k=1 p
k ln pk , both 0

when ∃k s.t. pk = 1, max. when all pk are
equal, minimizing favors leaves with most
samples belong to same class

Max. info. gain :Q(S)−
∑

τ∈L,R
|Sτ |
|S| Q(Sτ)

10.2 Forests
Increase robustness, many trees, easy to
interpret, behavior easy to modify, trained
using moderate amount data

p(c|v) = f(p1(c|v), . . . , pT (c|v))
Multiple trees : ST

0 ⊂ S0 randomly sampled
subsets

Fusing output : naive Bayesian p(c|v) ∝∏
t pt(c|v),L(c, v) =

1
T

∑
t − ln(pt(c|v)),

assumes each tree independent output,
training subsets disjoint, DB large enough

Randomized forests : less deep than ada boost,
more balanced, good for multi-class

11 Multi-Layer Perceptrons MLP
Differentiable output, like AdaBoost but
with all linear classifiers at the same
time, piecewise affine result, continuous,
descriptive power is larger for deep rather
than shallow networks with equal nb. of
param.s, perceptrons do not extrapolate well,
problem of vanishing/exploding gradients,
can handle huge training data, performance is
hard to predict

Non-Linear Regression Problem :
({x1, z1}, . . . {xn, zn}), min.

∑
i(zi −

f(xi, w̃))2

Generalize Log.Reg. : y(x) = σ(w · x + b)
MLP : h = σ(Wx + b),W = [w1 . . . wH]T

Binary case : yn = σ(w2(σ(W1xn + b1)) +
b2) ∈ [0, 1], min. binary cross entropy
E(W1,w2, b1, b2) = 1

N

∑N
n=1 En(. . .),

En(. . .) = −(tn ln(yn) + (1 −
tn) ln(1− yn)), differentiable (gradient)

Multi-Class : yn = σ(W2(σ(W1xn +

b1)) + b2) ∈ Rk , pkn =
exp(yn[k])∑
j exp(yn[j]) ,

En(. . .) = −
∑
tkn ln

(
pkn

)
Compact :w = [w1|b1|w2|b2],E(w =∑N

n=1 En(w))
Stochastic descent :wτ+1 = wτ −
η
∑

n∈Bτ ∇En(wτ),Bτ randomly chosen
set of indices (mini-batch), reduce chances
falling to local min., possible to compute on
GPUs with large databases, helps prevent
overfitting

Sigmoid ReLu : sig. issue (value not close to
zero means gradients vanish), ReLu boosts
performance

ResNet : bypass (final layers only compute
residuals), passing input to final layer

Forward pass : ∀h, ah =
∑

l whlxl, zh =
σ(ah) ; ∀k, ak =

∑
j wkjzj

Backward pass : ∀k, δk = δEn
δak

; ∀j, δj =

σ′(aj)
∑

k wkjδk
Backprop :∇En = [∂En

∂wji
]

12 Convolutional Neural Nets
Neighboring pixels are highly correlated, image
filter should be translation equivariant

Convolution : g ∗ f(t) =
∫
τ g(t− τ)f(τ) dτ

Discrete 2D :m ∗ ∗f(x, y) =∑w
i=0

∑w
j=0m(i, j)f(x − i, y − j),m

known as kernel
2D Convolutional Layer : a1i,j = σ(b +∑nx

x=0 wx,ya0i+x,j+y), same weightswx,y

used for all activations, fewer weights than
fully connected layers

Pooling Layer : reduces number of inputs,
replace all activations in neighborhood by
single one, max-polling is simply keeping the
max. value

Stride : larger than 1 reduces and convolves at
same time,

Feature Maps : convolutional masks, oriented
derivatives (probably like the brain)

Shriking and reexpanding : composition of
convolution + transposed convolution with
same param.s : signal size unchanged, create
grid-structure artifacts

UNet : convolution, downsampling, upsampling
(duplication, (bilinear) interpolation,
transpose convo.)

Estimating Tubularity : min.LBCE =
1
N

∑N
i=1 yn log(ŷn) + (1 − yn) log(ŷn),

ŷ = fw(x)

13 Transformers
Context matters
Self attention : I words xi, ∀i, sa[xi] =∑I

j=1 a[xi, xj]Wvxj
Matrix : queryXq = XWq , keyXk = XWk ,
valueXv = XWv

Attention Weights : a[xi, xj] =
softmaxj [(Wqxi)T Wkxj], Sa(X) =
Softmax[XWqWT

k XT]XWw ,X =
[x1, . . . , xI]

Transformer Layer :X → X + Sa(X),
X → LayerNorm(X), xi → xi + mlp[xi] ∀i,
X → LayerNorm(X)

Vision Transformers : break up images into
square patches, transform each patch
into feature vector, feed to transformer
architecture

U-Net + Transformers : CNN operates at
low-resolution produces feature vector,
transform on FV, upsampling like U-Net

14 Dimensionality Reduction
Discovering data manifold, finding
low-dimensional representation of data, loss
of information, noise reduction, unsupervised

Formalization : mapping yi = f(xi), xi ∈ RD

high-dim. data sample, yi ∈ Rd low-dim. repr.
14.1 Linear
Linear : yi = WT xi
PCA : N samples {xi}, yi = WT (xi − x̄) s.t.

WT W = Id, x̄ = 1
N

∑N
i=1 xi

PCA objective : keep important signal, remove
noise, find directions with large variance;
for j-th output dim. maxim. var(y(j)i) =
1
N

∑N
i=1(y

(j)
i − ȳ(j))2, ȳ(j) mean of dim. of

j-th data pt. after projection

Variance maximization 1D : D-dim. vec.w1 s.t.
w1T w1 = 1, ȳ = wT

1 x̄, var({yi}) = wT
1 Cw1,

input data covar. matrixC = 1
N

∑N
i=1(xi −

x̄)(xi − x̄T) ;maxw1 wT
1 Cw1

Solve lagrangian :L(w1, λ1) = wT
1 Cw1 +

λ1(1 − wT
1 w1), gradient to 0Cw1 = λ1w1,

w1 eigenvec. ofCwith the largest eigenval. λ1
d > 1 :W = [w1| . . . |wd] ∈ RD×d, larger
eigenvalues

Explained variance :WTCW =
∑

i λi

Without dimensionality reduction : d = D, (3D :
rotation of data), no loss of information, data
projected to uncorrelated axes

Without Loss of info. : keep all eigenvectors
(non-zero eigenvalues), {yi} lower
dimensional d < D

Retain variance :
∑d

j=1 λj ≥ V
∑D

k=1 λk , find
d, to explain V of the variance

PCA Mapping : x̂ = x̄ + Wy, regularization
Optimal linear mapping : some loss of
information, rectangularW orthogonal
minimizing error e = ∥x̂ − x∥2 where
x̂ = x̄ + Wy = x̄ + WWT (x − x̄)

Fisher Linear discriminant analysis LDA : cluster
samples form same class (C classes), minim.
EW (w1) =

∑C
c=1

∑
i∈C(yi − νC)2, νC

mean of samples in class c after projection,
yi & νc depend onw1 ;EW (w1) =
wT
1 SW w1, withing-class scatter matrix

SW =
∑C

c=1

∑
i∈c(xi − µc)(xi − µc)T

Separating different classes : separate different
clusters, push means of clusters away,
maxim.EB(w1) =

∑C
c=1Nc(νc − ȳ)2,

ȳmean of all samples after projection,
Nc nb. of samples in class c ;EB(w1) =
wT
1 SBw1, between-class scatter matrix

SB =
∑C

c=1Nc(µc − x̄)(µc − x̄)T , x̄mean
of all samples, {µc} class-specific means

Fisher LDA 1D : maximize J(w1) =
EB(w1)
EW (w1)

;
maxw1 wT

1 SBw1 withwT
1 SW w1 = 1 ; 0

gradient Lagrangian : SBw1 = λ1SW w1,w1

eigenvector with largest eigenvalue
PCA vs. LDA : max. projected var / max. btw-var
min. within-var

14.2 Non-Linear
Latent Space : z = fe(x), x̂ = fd(z), x̂ ≈ x,
removes unnecessary degrees of freedom,
denoise original data

Basic autoencoder : z = σe(Wex + be)
latent vector repr. of x, x̂ = σd(Wdz + bd)
reconstruction of x,We,Wd computed by
minim.

∑
n ∥x̂n − xn∥2 (unsupervised)

Deep autoencoder : stack layers with activ. func.
Complete : dim z < dim x undercomplete
(compress input, captures correlations),
dim z > dim x overcomplete (higher dim.

can help, degenerate sol.s possible, need
regularization term)

Denoising : low-dim. latent repr. encourages
"intelligent" mapping, dim. expansion learn to
copy input; to prevent : add noise to input and
aim to reconstruct noise-free version, avoid
trivial solutions using regularization term
R(w) =

∑
n L(xn,w) + λΩ(xn,w)

	Basics
	Python

	K Nearest Neighbors
	Nearest Neighbors
	K Nearest Neighbors

	K Means
	K-Means clustering

	Linear Regression
	Linear classification

	Logistic Regression
	Max Margin Classifiers
	AdaBoost
	Polynomial Support Vector Machines
	Optimization
	Forests
	Trees
	Forests

	Multi-Layer Perceptrons MLP
	Convolutional Neural Nets
	Transformers
	Dimensionality Reduction
	Linear
	Non-Linear

