BA4 - Machine Learning Cheat Sheet 1/2

Lucas Jung

1 Basics

Improve learning over time, autonomous,
feeding data, optimization problem

x : feature vec., w : model parameters, ¢ : (true)

class favored (fraud/spam detect.); sol.s : vec.s, dim.ality reduction)

weight nehbr.s by inverse of their class size, 4 Linear Regression

under-sampling dominant class, augmenting predict a continuous val., requires deriv. w.rt w
other classes generating synthetic examples 1 [inear regression : param.s wo, wy, N

asymptotically 0 or 1
Interpretation : y(x; W) : prob. that x belongs to
one class or the other (0.5 on boundary)
Outliers : margin can be + important

label, y : predictor, L : loss func., E : err. func. Condensed Nearest nehbr.s : reduce nb. of pt.s, training pairs { (i, t)}, yi = wo + w1z v . Iy e Aas
Classification : discrete or categorical output replace pt.s by prototypes : take pt.sthatare (|set0 ¢, (true val) *%he aakh el Jaats

mislabeled using pt.s already taken, faster
Gossip Based computing : highly parallel, creates
Ew) =N L(y(xn; w), tn) arand. graph, robust to churn partition and
Training Testing : 1 use annotated training setto ~ breakdowns, adapted to P2P networks
learn, 2 test set to measure performance (both 3 K Means
must have same statistical distribution)
1D Model: —1 if observed < T (threshold), 1
otherwise, 2D Model : 2 observed, 2d graph,
find decision boundary line between pt.s
Overfit : good train, bad test
Underfit : bad train, bad test

Regression : numerical or continuous output

> N I Training : squared euclidean d?(y;, t;) = (yi — Linear discriminant : K linear classifiers
Supervised Classification : minimize

t;)?, least-squares min %Zi\; d?(yiti) ye(x) = Wy - X, boundaries: y,(x) =

wo L y(x) <= (W, —w;)-X = 0,regions are
convex
HyperPlane fitting : in dim. D, y = wo + w11 +Mulit-Class linear: y*(x) = Wy, - X = wix,
...twpzp = wIlzy ... 2p]T = assign x to class k if y* (x) > y'(x) VI # k,
wlx,x € RP+L;sol. gradient descent or k = argmax; y* (x), same properties as
binary logistic regression

Prediction:y: = w(+ wixt

Unsupervised learning : training set not
annotated, system learns classes

Clustering : identify groups without data
transformation

3.1 K-Means clustering

closed-form sol.
Closed-form solution : E (error func.) Vw E(w) = Multi-Class Cross Entropy : t5 € {0,1}
0,X = [x{ ... x{ Tt = [t1 ... ta]”, is prob. x, in class k, prob. x in class

h Group samples into & clusters (no labels w* = (XTX)"'xTt = XTt,XF X exp(ak(x))
1‘.1 Python . required), k given, works for well defined Moore-Penrose pseudo-inverse k:y®(z) >, exp(al () entropy
High-level, readable and concise code, fast clusters (& homogenous data) Prediction:yy = (w*)T[1 x¢] B F) L= S gk ln(yk(x))
i i i i PN} = n))s
prototyping, interpreted, dynamic typing Clusterk:pt.s{x,x,...,X;x },pr:centerof Evaluation metrics: Mean Squared Error (MSE) VEw, =3, (y*()_T;k) kn k() = w1
Slow run-time (dynamic typing, memory . 1 N }L\fk MSE — L ZNt (i — £:)?, Mean wi = 2.n (Y (Xn n)Xn,a”(X) = Wy X
management,), modules (NumPy, SciPy,) gravity, mean s = 7 YL x eRP T Np Zei=1\YE T) 6 Max Margin Classifiers
2 K Nearest Neighbors Minimize : Zk 1 Z 1(X - i) init. l/ibsolute Errg)r MAI\EIAP‘EIZ yf_|t Mr;an/t\;solute Larger margin, trade train. mistakes for test. acc.
2.1 Nearest Neighbors ercentage Error () (t; *), Root Mean Signed distance: w,x € RM,X = [1||x],W =

params i cocr bl assnBl o squaredrror (1SE) VATSE
assigned He, UP Hi BIVENPLS 4 4 Linear classification
Stop : fixed nb. iter.s, iter till convergence med wst.w - xis >l 0 for ’+fsamples, < lO
(guaranteed, not always to best sol.), diff. in or m_o?_t _t slamtphes, can tl avor o(;u: sof :
P over infinitely others, no close and far from
center locations is small #* = arg maxg miny, dn

L o o I " boundary w
Initial conditions : sensitive to initial conditions,
try several diff. rand. init., keep best res Line: (u,v) € R?, au+ bv + ¢ = 0, normalized : Llnearsupport vector machine SVM ming, dn
: ' - y 2 — 1/||w = argminy ||wl||”/2st.
Inhomogeneous data : euclidean dist. not always No(:m;rlgnit velc v{]”t ”. (W %) g vl H /
. . . .in = VIt ln n) Z
zsf?t:c;[;?s g;?zfga-vgjlj zqczlg:g:fheZ’i;nCOde Slack Variables : allow some training pt.s

to be misclassified, &, for each sample,
(subtract smallest val. and scale [0, 1]), use %) > &n S P k
diff. metric (Manhattan) bn - (W-%n) 2 1= &n,&n > Oweakens

C . | f their cl constraint; 0 < &, < 1sampleninside
ompactness : pt.s close to center of their cluster margin but correctly classified, £,, > 1 sample

[wol|w], W' = w/||w||; hyperplane:w -X =0
sgn. dist.: W' - X, invariant to Aw

Max. Margin Classifier: ¢,, € {—1,1},
{(Xn frr)L <n<N } n tn ("X/u . iu) >0,

unsigned dist. : dr, = tn (W - X)/||w||, max.:

Sensitive : pt. close to outlier misclassified

Simplest algorithm : classify new x according to
label of nearest nehbr. in training set

2D Voronoi Diagram : given {xn }1<n<n
training samples, Voronoi cells : Cy, = {x €
X|Vj # n,d(x,xn) < d(x,x;)},Voronoi
diagram:V = {Cp}1<n<n,decision
boundary : select edges of Voronoi Diagram

2.2 KNearest Neighbors

Classify according to majority of labels in &
nearest nehbr.s

Test data not used during training, misclassifying
pt.s near the decision boundary, single

\/(l;?[a, b]

Signed dist. to line: P = [u1,v1],0 = [ug, vo]
online,h = n[ui — ug,v1 — vo] =
(aur + buvr + ¢);h:0(online),> Oon
one side, < 0 on other side

meta-parameter k, smaller k greater Connectivity : pt.s of same cluster are closeto Signed dist. Ndim.:x € R?, n misclassified
overfitting, More nehbr.s: + coverage, fewer one another X = [La,...,zn,Ww = Formulation Polynomial SVM: w* —
nehbr.s:bettgraccuracy,undeflnedzone Spectral clustering h-based tivit [wvalv---vaLZZN:l wi2 =1, arg min ”w” /2 n ('Z ¢
e oo Pt L: erlng.frap ectio cofm?lc ity hyperplane:# -X = 0,h =W -X Vnt ((w &)})> 1 nélco::;tant
Limitations : performance (load all training data, cut graph on weak connections, similarity Perce tl’on'm.in E(w ; SIS (e Nitn - (W Xp) 21 &ny,én >
—|lxi—x;|I°]II ptron: min. E(w) > n=1 591 (cost of constraint violations)

distances to all training samples), distance

metric (problematic in high dim.s and with

noisy features), curse of dim.ality
Distances : euclidean : da (x,x’)

P (x; — 2])2, Manhattan : d (x, %) =

Xn)tn;setwy = 0,pickrnd.idx.n,X, x
misclassified : W41 = Wi + tnXn

Test:y(z;w) =1ifw-X > 0,-1 otherwise

Convergence Theorem: 3y > 0 (margin) &
wE&||w*|| = 1st.Vn,tn(Ww* - x,) >

Wi; = exp () o hyper-param.),

cost (to minimize) cut(A, B)

> ica,jep Wij, degree of node d;

>2; Wij,volumevol(A) = 37, 4 ds
Norm|l|zed cut : sol. favor imbalanced partitions,

7 AdaBoost

R2
S i —) N cut(A,B) | cut(A,B) = Perceptron makes < £ errors, St '
T t(A, B) = ——=2% 2 ~
Cross Validation : split train. set into real cu.() vol(A) + vol(B) R = maxy, ||| Strong cla55|.f|er as vTve|ghted sum of weak ones,
training set & valid. set, choose k minimize Relaxation : normalized cut ~ eigenvalue 5 Logistic R . Y (x) =sign(3;—1 arye(x))
classification error on valid. set problem (D — W)y = ADy, (D — W) Ogistic Megression Algorithm :init. data weights Vn w;, = 1/N;

graph Laplacian, sol. is eigenvec. with second Logisitc Regression : y(x;w) = o(W - X),
smallest eigenvalue (+ val. : pt. belong to Yn = y(Xn; W), min. cross entropy £(w)
partition, — : doesn’t belong) =2 (tnInyn + (1 = tn)In(1 —yn))

fort € [1,...,T]:find classifier y;

Run K-NN for many k, use only training and valid.
y 4 & minimizing weighted error =, . wh,

set, pick best k (highest accuracy on valid. set)
Polynomial curve fitting: y = Zj”io wjx

t
Dtn Fye () Wn

' K-way partition : more than 2 clusters : (convex), VE(W) = 3, (yn — tn)Xn, find evaluated:e; = SNyt &

findw = [wo,...,wps] curve closest: - o max. likelihood sol n=1%n

S W(@n, w) —tn)? recursively apply 2-way partitioning iemoi 1 / o = log(l €t> update weights
n " n (inefficient, unstable), use K eigenvec.s (pt. Sigmoid: o(a) = TFexp(—a)’? = o(l—o), ’

Imbalanced Training set : better represented

repr. as K-dim. vec., apply K-meansto N infin. differentiable, easy derivative, wht! = wt exp(atl(tn # yi(x)))

Training testing errors: e < 0.5 (better
than chance) training error exponentially
decrease,1/N > 1[tn # h(xn)] <
[Tz Ve —e)

8 Polynomial Support Vector Machines

Map data to higher dimension, use linear
classifier; increases dimensionality of prob.,
computationally complex, too complex for
large dataset, higher dimensions (irregular
boundaries, noise sensitive), more accurate
than KNN (param.s must well chosen)

Polynomial Approximation : w = [wq
Vo f(z) ~ w;x?, least squares w*
argming »_, (tn — Zf”o wixt)?,
fu(e) = Xy wiat

Feature expansion : ¢ ()
flz) = WT¢>(w)

least squares : w*

Mzz? ... zM]

)

= argminy y (tn —
wlo(zn))? = arg miny [|Pw —t|| P =
[()(X])l~...7u(x\)]tfl , tN]
Regularization : weight decay : tend Welght
to decay to 0, discourages quick variations,
w* = arg miny, ||®w — t|* + %HW”2

’Feature expansionFE: ¢ : R? — RD,

y(x) = o(w" p(x) +wo)
Polynomial FE : d-Dimensional, ¢(x) column vec.
(every possible monomials)
Polynomial SYM :Vn tn (W - ¢(xn))
1- 5n7§n >0

= Percentage of separab. partitions: V dimension

of space, p : number of samples, %,
separable with large N whenp < 2N
Lagrangian Formulation : constrained

minimization, L(w, A) Ljwl* -

27127:1)‘n(tnﬁ) Qb(xn) - 1),1\ =

X1,) An)
Support Vectors: k(x,x') = ¢(x)T o (x),

w o= Zf,\L)\ntn@(xn>:y<x) =

Zf}; Antnk(x,xn)+b; An non zero only for

subset of data pts., x,, support vectors satisfy
tny(xn) = 1, only consider support vectors
attesttime; A\, < C z, lieson margin,
An = C zy, inside margin, large C' minimizes
number of miscalss. train. pt.s
Inference Time : y(x) = 25:1 Antnk(X,%xn) +
b, f(x) not explicit anymore, k(. ..) isa
similarity measure; Kernel trick : ¢ implicit
(never computed), only need compute k&
Kernel : polynomial kernels (small to high dim.)
14+ (xTx")4, Gaussian kernels (small to infinite

dim., still O(N3)) eXp(—Hx - x’H2/02>
9 Optimization
Convex func. have a global min., find using first

or second (faster) order deriv., non-convex
usually yield a local min.

BA4 - Machine Learning

Cheat Sheet 2/2

Lucas Jung

Partial derivative : af
lima,_s0 I ,wd-ﬁ-Am,A~~)—f(~~~,90dw~)
Gradient: Vf = [8931 ,%],direction

of greatest increase at x, magnitude is rate of

increase, 0 at stationary pt.s (minima, maxima,

saddle pt.s)

Gradient descent : init. xg randomly, update
Xp = Xp—1 — NV f(zr_1),nstepsize
(learning rate)

Conjugate gradient : faster convergence,
weighted average previous search directions;
startxog, go = VF(x0);take k from 0 to
n — 1:find o, minimizing f(x + argk),

_ _ v
Xe+1 = Xk +ange, B = g
8k+1 = —Vf(Xk+1) + B8k X0 = Xn, loop

Constrained optimization : miny f(x), subject to
1,...,P)

Implicit func. theorem : min. f(z, y) subject to
g(z,y) < ¢, atconstrained min. 3\ € Rs.t.
V f = AVg, X Lagrange multiplier

Lagrangian: L(x, A\, v) fx) +
oLy Aifi(x) + 211, vihi(x), A Lagrange
mult. for f;(x) < 0, v; Lagrange mult. for
hi(x) = 0;atmin. VxL = VL =V,L

Lagrange dual func.: g(\,v) = infy L(x, A\, v),
concave func., single maximum, lower bound
tooptimal f*: A >0 = g(A\v) < f*
forany (), v), maxi. g, constrained to
unconstrained

10 Forests

10.1 Trees

Training : compute p; (c) samples proportion in
each class landing in leaf [

Testing : probability of belonging to class c
p(elv) = pi(c) iflands in leaf !

Weak learners: h(v, 0), oriented line [r; >
#(v) Y > 2], ¢(v) = (z1 72 1)T

Entropy : Giniindex Q(S) =
entropy Q(S) K pFnpF, both 0
when 3k st. pF = 1, max. when all p* are
equal, minimizmg favors leaves with most
samples belong to same class

Max. info. gain: Q(S)

10.2 Forests

Increase robustness, many trees, easy to
interpret, behavior easy to modify, trained
using moderate amount data

p(clv) = f(p1(cfv), ..., pr(clv))

Multiple trees: SOT C Sp randomly sampled
subsets

Fusing output : naive Bayesian p(c|v) o
[T, pe(clv), Lic,v) = 7 32, — In(pe(clv)),
assumes each tree independent output,
training subsets disjoint, DB large enough

- [ST]
re€L.R 18]

Q(57)

=0

Zi(1P ()1

Randomized forests : less deep than ada boost,
more balanced, good for multi-class

11 Multi-Layer Perceptrons MLP
Differentiable output, like AdaBoost but
with all linear classifiers at the same
time, piecewise affine result, continuous,
descriptive power is larger for deep rather
than shallow networks with equal nb. of
param.s, perceptrons do not extrapolate well,
problem of vanishing/exploding gradients,
can handle huge training data, performance is
hard to predict

Non-Linear Regression Problem :
({xi.z1b, oo A%, 2o p),min 30 (2 —
Flxi, %))?

Generalize Log.Reg.: y(x) = o(w - x + b)

MLP:h = o(Wx+b),W = [wy ... wy]T

Binary case:yn = o(w2(c(Wixn + b1)) +
b2) € [0, 1], min. binary cross entropy
E(W1,w2,b1,b2) = %ZLE ()
E.(...) —(tnIn(yn) + (1 —
tn)In(1 — yn)), differentiable (gradient)

Multi-Class:yn, = o(Wa(oc(Wix, +

b1)) + b2) € R, pf = %
En(..) =

Compact:w [Wllbl'Wg'szE(W
St En(w)

Stochastic descent : w711 w
N> nepr VEn(WT), BT randomly chosen
set of indices (mini-batch), reduce chances
falling to local min., possible to compute on
GPUs with large databases, helps prevent
overfitting

Sigmoid ReLu : sig. issue (value not close to
zero means gradients vanish), ReLu boosts
performance

ResNet : bypass (final layers only compute
residuals), passing input to final layer

Forward pass:Vh,ap, = >, wnixy, 2, =
olan);Vk,ar =3 ; w2

Backward pass:Vk,d§, = ‘fs% 3 V5,05 =

o’(a;) 2oy Wiy Ok
Backprop:VE, = [OE"]

12 Convolutional Neural Nets

Neighboring pixels are highly correlated, image
filter should be translation equivariant

Convolution: g * f(t) = [_g(t —) f(T) dr

Discrete2D:m * xf(x,y

;U:O z;’U:O m(’hj)f(ﬁ - ivy - j)»m

known as kernel

2D ConvolutlonalLayer a;

— T _

1 —

i o(b +

Yonto Wa,yady , i1,), same weights wa,y
used for all activations, fewer weights than
fully connected layers

Pooling Layer : reduces number of inputs,
replace all activations in neighborhood by
single one, max-polling is simply keeping the

Varian;e maximization 1D : D-dim. vec. w1 s.t.
wilw, =1,5= W?f{, var({y;}) = wy TCwy,
input data covar. matrixC = & SN | (x; —

max. value %)(x; — X1); maxy, wawl
Stride : larger than 1 reduces and convolves at g e lagrangian: L(w1, A1) = w7 Cwy +
same time, ! !

‘ A1 (1 — wlwy), gradientto 0 Cwy = A\jwi,

= R e w1 eigenvec. of C with the largest eigenval. Ay
EEE e d>1:W = [wy|...|wg] € RPX? larger
stide=1 stride=2 stride=3 eigenvalues

Feature Maps : convolutional masks, oriented ~ Explained variance: W/ CW = 3~)
derivatives (probably like the brain)

Shriking and reexpanding : composition of
convolution + transposed convolution with
same param.s : signal size unchanged, create
grid-structure artifacts

UNet : convolution, downsampling, upsampling
(duplication, (bilinear) interpolation,
transpose convo.)

Eshmatw;\gTubularity min. Lpcg

i1 Yn 10g(Gn) + (1 — yn) log(gn),

Without dimensionality reduction:d = D, (3D:
rotation of data), no loss of information, data
projected to uncorrelated axes

Without Loss of info. : keep all eigenvectors
(non-zero eigenvalues), {y; } lower
dimensionald < D

Retain variance: E‘j:l A > VP | A, find
d, to explain V of the variance

PCA Mapping : x = x -+ Wy, regularization

Optimal linear mapping : some loss of
information, rectangular W orthogonal
minimizingerrore = ||% — x||* where
$=%x+Wy=%+WWT(x —x)

1
N
y =

13 Transformers

Context matters

Self attention : | words x;, Vi, sa[x;]
ZJI':1 alx;, x;|Woyx;

Matrix : query Xy = XWg, key X, = XWy,
value X, = XW,

Attention Weights : a[x;, x;]
softmax; [(Wqx;) T Wyx,], Sa(X) =
Softmax[XW,WIXT]XW,,,X =
(x1,...,x1]

Transformer Layer: X — X + Sa(X),
X — LayerNorm(X),x; — x; + mlp[x;] V4,
X — LayerNorm(X)

Vision Transformers : break up images into
square patches, transform each patch
into feature vector, feed to transformer
architecture

U-Net + Transformers : CNN operates at
low-resolution produces feature vector,
transform on FV, upsampling like U-Net

14 Dimensionality Reduction

Discovering data manifold, finding
low-dimensional representation of data, loss
of information, noise reduction, unsupervised

Formalization : mappingy; = f(x;),x; € RP
high-dim. data sample, y; € R® low-dim. repr.

14.1 Linear

Linear:y; = WTx;

PCA:Nsamples {x;},y; = WT(x; — %) sit.
WIW=1I5,%x=%>" x

PCA objective : keep important signal, remove
noise, find directions with large variance; minim. 32, [|%n — Xn||? (unsupervised)
forJ-th output dim. maxim. var(ym) = Deep autoencoder : stack layers with activ. func.
ﬁ Zizl(ylﬁj _ y(J))Q 7)) mean of dim. of Complete:dimz < dim x undercomplete

j-th data pt. after projection (compress input, captures correlations),
dimz > dimx overcomplete (higher dim.

Fisher Linear discriminant analysis LDA : cluster
samples form sage class (C' classes), minim.
Ew(w1) = 25:1 Ziec(yi - VC)QJVC
mean of samples in class c after projection,
y; &ve dependonwy ; Eyy (wy)
wlTSle, withing-class scatter matrix

c
Sw =>4 Ziec(xi — pe)(Xi — #C)T

Separating different classes : separate different
clusters, push means of clusters away,
maxim. Eg(w1) = 25:1 Ne(ve — 9)2,

g mean of all samples after projection,
N¢nb. of samplesinclassc; Eg(w1) =
wlTSBwl, between-class scatter matrix

Sp =3, Ne(pe — %)(pe — %), X mean
of all samples, {u.} class-specific means

Fisher LDA 1D : maximize J(w1) %;

maXw; W{SBwl with WTSle = 1;0
gradient Lagrangian:Spwi = A1Syywi, w1
eigenvector with largest eigenvalue

PCA vs. LDA : max. projected var / max. btw-var
min. within-var

14.2 Non-Linear

LatentSpace:z = fe(x),2 = fqa(2z),% = x,
removes unnecessary degrees of freedom,
denoise original data

Basic autoencoder:z = o¢(Wex + be)
latent vector repr. of x,x = 04(Wyz + by)
reconstruction of x, W., W, computed by

can help, degenerate sol.s possible, need
regularization term)

Denoising : low-dim. latent repr. encourages
"intelligent" mapping, dim. expansion learn to
copy input; to prevent : add noise to input and
aim to reconstruct noise-free version, avoid
trivial solutions using regularization term
R(w) = X2, L(xn, W) + AQ(xn, W)

	Basics
	Python

	K Nearest Neighbors
	Nearest Neighbors
	K Nearest Neighbors

	K Means
	K-Means clustering

	Linear Regression
	Linear classification

	Logistic Regression
	Max Margin Classifiers
	AdaBoost
	Polynomial Support Vector Machines
	Optimization
	Forests
	Trees
	Forests

	Multi-Layer Perceptrons MLP
	Convolutional Neural Nets
	Transformers
	Dimensionality Reduction
	Linear
	Non-Linear

