
BA3 CA1 Cheat Sheet 1/2 Lucas Jung

1 Processor

2 ISA
Instruction classes + registers + addressing mode
+memory organisation/access + instruction
encoding

CISC : few registers, complex and variable size
instruction encoding, complex addressing
modes, variable execution pattern (Intel)

RISC : 2n equivalent registers, regular (1 or
2 sizes) instruction encoding, load/store
architectures, regular execution pattern (MIPS,
Alpha, most recent ISAs)

Compiler : code→ assembly
Assembler : assembly→machine code

2.1 Flow
Jumping : unconditionally changing flow
Branching : conditionally changing flow
Calling functions / returning from functions
2.2 MIPS
32 registers (32-bit wide)
Memory in bytes, load/store words aligned to a
word boundary

Endianness : order in which bytes are arranged
into words (MIPS is bi-endian)

2.2.1 Functions
Caller : making the call
Callee : taking the call

Caller-saved registers : responsibility of the
caller, caller pushes them on stack before
function call, caller pops their original value
from stack after returning from callee, callee

can use them freely
Callee-saved registers : responsibility of
callee, callee pushes them on stack before
modifying them, callee pops their original
value from stack before returning to the caller,
caller safely assumes that registers are not
permanently modified by callee

Not enough registers : stack (last-in, fist-out),
grows towards low addresses

3 Computer Arithmetic
3.1 Integer
Unsigned (≥ 0) binary number :

A = ⟨an−1, . . . , a0⟩ =
∑n−1

i=0 ai2
i

can be seen as having infinite leading zeros
Sign and Magnitude (S&M) :

A = ⟨s an−1, . . . , a0⟩ = (−1)s ·
∑n−2

i=0 ai2
i

Leftmost bit represents sign (1 for negative)
Familiar for users, simple multiplication, not
efficient adders, redundant zero (±0)

Two’s complement :A = ⟨an−1, . . . , a0⟩ =
−an−12n−1 +

∑n−2
i=0 ai2

i

Amax = 2n−1 − 1,Amin = −2n−1

sign extension : add leading zeros (ones) for
positive (negative) numbers
A+A = −1 so−A = A+ 1

Overflow : makes sum of positives negative or
sum of negatives positive

addu does not check overflow, add stops
execution in case of overflow

Multiplication on MIPS : result into special
register pair Hi & Lo, overflow not tested
move results back into regular registers mflo
mfhimove from low/high

3.2 Fixed-Floating point
3.2.1 Fixed point
Adds a fractional point in a fixed position,m
binary digits past point, n binary digits left of
the point :

An,m = ⟨am+n−1 . . . am . am−1 . . . a0⟩

= 1
2m

∑m+n−1
i=0 ai2

i

Very cheap and fast, portable (every processor
has integer processing units), costs lie in
accuracy

3.2.2 Floating point
Two parts (each positive or negative) :M
mantissa (significand) normalized,E
exponent field

X = M · 2E
Large dynamic range, bad resolution (minimum
difference between two successive floating
point numbers), bad precision

Floating point is notR : (a+ b)+ c ̸= a+(b+ c)

Biased representation :
A = ⟨an−1...a0⟩ =

∑n−1
i=0 ai2

i−B

IEEE 754 : hidden bit is not stored (actual value

of mantissa is 1.M , be careful for 0), exponent
is biased representationB = 127 for single
precision,B = 1023 for double precision
X = 1.M · 2E−B

Sigle precision range :±2 · 10−38 → 2 · 1038
Double precision range :±2 · 10−308 →
2 · 10308
Zero values are represented by the biased
exponent andmantissa both being 0, sign bit
does not matter (±0)
Positive and negative infinity (result of
arithmetic overflow) : biased exponent equal
to all 1, faction equal to all 0, sign for±∞
NaN (not a number) result of invalid
operations : biased exponent equal to all 1,
fraction equal to anything but all 0, sign bit
does not matter
rounded to nearest value with a 0 LSB
FLAGS : overflow∞, underflow, division by 0
∞, inexact result, invalid operation Nan

ISA : floating point is rare in embedded
processor, emulated in software, often
dedicated separate register file and special
instructions for floating point

MIPS : floating-point coprocessor, own registers
$f0-$f31 32-bit wide, different instructions
depending on the precision

4 Cachememory
SRAM (cache) : content last as long as there’s
power, (like flip flop), low density, high power,
expensive, fast

DRAM (memory) : needs to be refreshed
regularly, (a capacitor and a switch, one
transistor), high density, low power, cheap,
slow

Temporal locality : data used recently, high
likelihood of being use again (loop, functions,
local variables)

Spatial locality : data currently used are likely to
be accessed in the future (arrays, sequential
elements)

Cache design : holds most recently accessed
data/instructions, divided into units (cache
blocks with cache tag holding the main
memory address)

Hit andmiss : hit = data is found in cache, miss =
data not found, hit (miss) rate = number of hits
(misses) over total number of cache accesses

Cache tag : every block has address tag keeping
(part of) main memory address of tha data
stored

Read hit : main memory not accessed, cache
replies sending requestedmemory content,
quick

Readmiss : accesses main memory to get data,
data stored (allocated) in cache and passed to
processor, longer waiting time

Write hit write-through : data written both into

cache andmain memory, straightforward,
keep the memory/buses busy for nothing,
good for write and re-read data frequently,
low read latency

Write hit write-back : data updated only in
cache (main memory will eventually become
wrong/obsolete), good for write-intensive
applications, remember which blacks are
obsolete (additional bit, dirty bit), before
overwriting dirty block from cache its content
is stored to memory, slow if many readmisses,
best for mixed (read and write) workloads

Write miss allocate : allocate the data block in
cache, signal write hit, write-back caches use
write-allocate

Write miss no-allocate : write data to memory,
not allocate in cache, wait next readmiss to
load data and allocate in cache, write-through
caches use write no-allocate

Eviction policies : no space for new data,
must overwrite one of the cache lines
(evection/replacement), least recently used
vs random

Associativity : number of cache lines where one
word of data can be placed

4.1 Fully associative cache
A word can go in whichever line of the cache
(associativity ofL for cache withL lines),
compare incoming tag with all existing tags
in parallel, huge logic overhead, very small
capacity, high hit rate

Valid bit : initial cache content is garbage, valid
bit added to every cache line to indicate
whether content is relevant, at start/reset
valid bit is 0, hit only if tag matches and valid
bit is 1

Temporal locality : one word per line, load from
main memory to cache exclusively required
data and when required, not bringing data in
advance

Spatial locality : multiple words per line, load not
only required word but also words near it

If 2m words are loaded at a time andmemory
address is n bits wide, lastm bits of the
address used to select a word from cache
line and first (n−m) bits of address form the
tag of cache line

4.2 Direct Mapped cache
A word is mapped to a single line of the cache,
associativity of 1

Cache capacity of 2m words,m address bits
used to index cache lines, (n − m) address
bits for a tag, each address directly maps to a
single cache line, incoming tag compared with
only one cache tag, behaving like standard
memory, low hit rate

Alias : different addresses use same line of the
direct mapped cache, resulting in frequent
cache pollution or conflict misses

4.3 Set-associative cache
Every word is mapped to as many cache
lines/blocks as there are ways, (called n-way
set-associative), intermediate hit rate

Number of sets = number of lines over number of
ways, number of address bits to select words
inside a line = log2(Nways), number, number
of address bits to index sets log2(Nsets)

4.4 Performance
Measure of performance : execution time of real
programs
X n times faster than Y : n = Y execution time

X execution time
Amdahl’s law : Speedup=

Execution time without enhancement
Execution time using enhancement

Execution timenew = Execution timeold × ((1 −
Fractionenhanced) +

Franctionenhanced
Speedupenhanced

)

Speedupoverall =
Exectution timeold
Execution timenew

Instruction count IC : instructions per program,
determined by ISA and compiler

Clock Cycles per instruction CPI, determined by
organization and ISA

Clock Cycle time : seconds per clock cycle,
1

clock freq , determined by hardware and
organization

CPU time : time a CPU takes to execute a
program (IC × CPI × CCT)

4.5 Hierarchy
Memory hierarchy organized in several levels,
eachmore expensive per byte than next level
farther from processor

Word not found in cache, must be fetch from
next level, multiple wordmove at a time

Miss rate : misses per memory references,
misleading because do not factor in cost of
a miss

Average memory access time : Hit time +
Miss rate× Miss penalty
Two-level cache : Hit time1 + Miss rate1 ×
(Hit time2 + Miss rate2 × Miss penalty2)

Cachemisses : Capacity, Conflict/collision
(for direct mapped or set-associative),
Compulsory/cold-start/first-reference (first
access to block cannot be hit)

4.5.1 Virtual Memory
Program about to run : copied from disk
(permanent) storage into main memory DRAM,
CPU program counter set to starting address
of program

Physical memory (address) : memory actually
available in computer (location in physical
memory)

Virtual Memory (address) : memory the OS
allows a program to believe available
(conventional address used by program,
os must translate to physical address),
cheap (need only as much RAM as program

BA3 CA1 Cheat Sheet 2/2 Lucas Jung

references), automatedmemory/disk
management, enables multiprogramming
time-sharing and protection

MMU : performs dynamic address translation,
placed between CPU and cache (cache called
physical) or between cache andmain memory
(cache called virtual)

Program relocation : programwritten without
knowing where stored in main memory

Relocation at load time : done at binary level
(not assembly code), challenge is how
to find where in binary are addresses,
limitations (large binary -> lot of work at load
time, inflexible - cannot change later, poor
utilization of memory - fragmentation)

Relocation in Hardware on-the-fly : physical
address obtained by adding constant (base)
to processor generated virtual address, OS
changes content of base and bounds registers
before passing control to program (context
switch), if virtual address is out of bounds
irregular situation signalled

Virtual memory Techniques :
Segmentation : base and bounds, splits physical
memory exactly as needed by program,
arbitrary start address and length of region
& contiguous memory addresses

Paging : split physical memory in small blocks
of identical size (4-64Kb) called pages (or a
frame), assigns as many pages as needed
by program, size always power of 2, address
within virtual page maps to single location
within physical page, starts at address aligned
with it size (some of least significant virtual
address bits do not need translation), simply
hardware (translations kept in main memory,
page table)simpler pace assignment (find
unused physical page), intrinsic waste
(partially unused page), page tables can be
large (not linear arrays), at least twomemory
accesses to get one word (1 read page table, 2
access data/instruction in memory)

Space management : if several programs run at
same time, memory shortage might occur and
must be handled

Add valid bit to each page table entry indicating
if page is in main memory (DRAM) or
secondary storage (disk)

Page fault : page is not in main memory, not an
error, processor cannot fetch page from disk
(MMU asks OS to do it), if main memory full OS
evict a page frommemory and write to disk
(victim page), OS copies requested page from
disk to main memory (swapping two pages,
slow), in many OSs done in special (swap)
partition of disk, swapping takes time, pages
much larger than cache blocks, use dirty bit in

page table to remember if write was made to
the page

Page repacement algorithms : which page to
evict, optimal = page that will not bef used
(referenced) again or not used for longest
period (guarantees lowest possible page-fault
rate, cannot be done unless future known),
FIFO, LRU, LFU (smallest usage count)

Control bits in page table : valid (page is in main
memory or on disk), used (used by evection
policy, which page to evict), dirty (indicate a
copy-back to disk needed prior to eviction),
protection bits (rights to read/write to page),
specific for operating system

Memory Protection : programs written to access
only their own data, systemmust protect the
programs from unallowed accesses, implicitly
enforced by translation controlled by OS

TLB : like small cache, avoid reading page table
frommain memory on every reference, part
of MMU, address-translation cache (stores
recent translations), TLB hit (miss) = requested
address translation (not) in TLB, placed
between CPU and cache, between cache and
main memory

Exception handlers : special procedures taking
appropriate actions on exception, arithmetic
problems (over/underflow) - memory
protection violation - input/output device
request - use of unsupported undefined
instructions - hardware malfunctions (power
failures, ...) - tracing instructions (breakpoints,
...), a way for the hardware to invoke software

TLBmiss : TLBmiss exception, handled in
software, OS invoked and walks page table
in main memory, missing translation found
= bought to TLD and hit on retry, missing
translation = page fault and OS brings missing
page from dit to main memory and hit on retry

MMU, cache, main memory, disk
4.6 Optimization
Reducing miss rate :
Larger block size : reduce compulsory misses,
increasedmiss penalty, increase conflict and
capacity misses
Bigger cache size : reduce capacity misses,

potentially longer hit time, higher cost and
power
Higher associativity : reduces conflict misses
(direct mapped of sizeN has about same
miss rate as two-way set-associative of size
N
2
), may reduce clock time (increase hit time),

memory access time grows, increased power
Reduce miss penalty :
Multilevel caches : more power efficient thn
single cache
Serve reads before writes completed

Reduce time to hit : small first-level cache, avoid
address translation when indexing cache

5 Acronyms
ALU : Arithmetic Logic Unit
PC : Program Counter
ISA : Instruction Set Architecture
CISC : Complex Instruction Set Computer
RISC : Reduced Instruction Set Computer
MIPS : Microprocessor without Interlocked
Pipeline Stages

S&M : Sign And Magnitude
NaN : Not a Number
SRAM : Static Random Access Memory
DRAM : Dynamic Random Access Memory
LRU : Least Recently Used
LFU : Least Frequently Used
FIFO : First-in First-out
IC : Instruction Count
CPI : clock Cycles Per Instruction
TLB : Translation Lookaside Buffer
OS : Operating System
MMU : Memory Management Unit

	Processor
	ISA
	Flow
	MIPS
	Functions

	Computer Arithmetic
	Integer
	Fixed-Floating point
	Fixed point
	Floating point

	Cache memory
	Fully associative cache
	Direct Mapped cache
	Set-associative cache
	Performance
	Hierarchy
	Virtual Memory

	Optimization

	Acronyms

