
BA3 ALGO Cheat Sheet 1/2 Lucas Jung

1 Sorting
1.1 Insertion sort
Best case : sorted inputΘ(n)
Worst case : reverse sortedΘ(n2)
1 for i in range(1, len(l)):
2 val = l[i]
3 j = i - 1
4 while j >= 0 and l[j] > val:
5 l[j + 1] = l[j]
6 j -= 1
7 l[j + 1] = val
1.2 Merge sort
Runtime complexity :Θ(n logn)
Not in-place
1 # l1, l2 sorted
2 def merge(l1, l2):
3 i, j = 0, 0
4 l = []
5 while i < len(l1) and j <

len(l2):↪→
6 cond = l1[i] < l2[i]
7 l.append(l1[i] if cond else

l2[j])↪→
8 i += cond
9 j += not cond
10 return l + l1[i:] + l2[j:]
11
12 def merge_sort(l):
13 if len(l) <= 1: return l
14 mid = len(l) // 2
15 l1 = merge_sort(l[:mid])
16 l2 = merge_sort(l[mid:])
17 return merge(l1, l2)
1.3 Heapsort
Runtime complexity :Θ(n logn)
In-place
1 def heap_sort(A):
2 build_max_heap(A)
3 for i in reversed(range(1,

len(A))):↪→
4 A[0], A[i] = A[i], A[0]
5 max_heapify(A, 0, i)
1.4 Quick Sort
Runtime complexity :Θ(n2)
Best case : subarrays completely balanced

Θ(n logn)
Random version :O(n logn)
In-place
1 # A[p..r] subarray
2 # last element of array as pivot
3 def partition(A, p, r):
4 x = A[r]
5 i = p - 1
6 for j in range(p, r):
7 if A[j] <= x:
8 i += 1
9 A[i], A[j] = A[j], A[i]
10 A[i + 1], A[r] = A[r], A[i + 1]
11 return i + 1
12
13 def random_partition(A, p, r):
14 i = random(p, r)
15 A[r], A[i] = A[i], A[r]
16 return partition(A, p, r)
17

18 def quicksort(A, p, r):
19 if p < r:
20 q = partition(A, p, r)
21 quicksort(A, p, q - 1)
22 quicksort(A, q + 1, r)
1.5 Counting sort
Count occurrences of elements in another array
of length n, then rewrite elements back into
array

Running time :Θ(n+ k)when all numbers are
between 0 and k

2 Divide & conquer
T (n) : time for size n
a : number of sub-problems
n
b
: size of sub-problems

D(n) : time to divide
C(n) : time to combine
T (n) = aT (n

b
) +D(n) + C(n)

2.1 Strassen algorithm
Runtime complexity :Θ(nlog2 7)
A,B,C : n

2
× n

2(
c11 c12
c21 c22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
M1 := (A11 +A22)(B11 +B22)
M2 := (A21 +A22)B11

M3 := A11(B12 −B22)
M4 := A22(B21 −B11)
M5 := (A11 +A12)B22

M6 := (A21 −A11)(B11 +B12)
M7 := (A12 −A22)(B21 +B22)
C11 = M1 +M4 −M5 +M7

C12 = M3 +M5, C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

2.2 Master theorem
a, b >= 1, c ≤ 1, ϵ > 0 constants

T (n) =
(
aT (

n

b
) + f(n)

)
∈

Θ(nlogb a) if f(n) ∈ O(nlogb(a−ϵ))

Θ(nlogb a logn) if f(n) ∈ Θ(nlogb a)

Θ(f(n)) if f(n) ∈ Ω(nlogb(a+ϵ))

and a · f(
n

b
) ≤ c · f(n), ∀n > N

2.3 Max subarray
Runtime (divide and conquer) :Θ(n logn)

1 def max_from(l, s=0):
2 return max((s := s + e, i) for

i, e in enumerate(l))↪→
3
4 def max_crossing(l1, l2):
5 s1, i = max_from(reversed(l1))
6 s2, j = max_from(iter(l2))
7 return s1 + s2, (i, len(l1) +

j)↪→
8
9 def max_subarray(l):

10 if len(l) == 1:
11 return l[0], (0, 0)
12 mid = len(l) // 2
13 ls = l[:mid], l[mid:]

14 s1, s2 = map(max_subarray, ls)
15 s3 = max_crossing(*ls)
16 return max(s1, s2, s3)
Runtime linear :O(n)

1 def max_subarray_lin(l):
2 M = m = (l[0], (0, 0))
3 for i in range(1, len(l)):
4 m = max((l[i], (i, i)),

(m[0] + l[i], (m[1][0],
i)))

↪→
↪→

5 M = max(M, m)
6 return M
3 Data structures
3.1 Heap
Heap (not garbage-collected storage) : nearly
compete binary tree

Max(Min)-Heap property : key of i’s children is
<=(>=) to i’s key,
maximum (minimum) element is the root

Height of node : nb of edges on longest simple
path from node to a leaf

Height of head : height of root
Store heap in array :
L[0] root
L[(2*i)+1] left child node
L[(2*i)+2] right child node
L[(i-1)//2] parent node

3.1.1 Max-Heapify
Runtime complexity :O(logn)
Space complexity :Θ(n)

Maintains the Max-Heap property given a heap
such that the subtrees are Max-Heap

1 def max_heapify(A, i, n):
2 I = [i, 2*i+1, 2*i+2]
3 c = filter(lambda i: i < n, I)
4 m = max(c, key=lambda i: A[i])
5 if m != i:
6 A[i], A[m] = A[m], A[i]
7 max_heapify(A, m, n)
3.1.2 Build Max-Heap
Runtime complexity :O(n)

1 def build_max_heap(A):
2 for i in reversed(range(len(A)

// 2)):↪→
3 max_heapify(A, i, len(A))
3.1.3 Priority Queue
Dynamic set S of elements, each element has a
key (value regulating its importance)

Insert(S, x) :O(logn)
Maximum(S) :O(1)
Pop-Maximum(S) :O(logn)
Increase-Key(S, x, k) :O(logn)

3.2 Stack and Queues
Very efficient, limited support (no search, ...),
arrays implementations have fixed capacity

Stack : Last-in, first-out
Push(S, x), Pop(S) :O(1)

Queue : First-in, first-out
Enqueue(Q, x), Dequeue(Q) :O(1)

3.3 Linked list
Insertion, deletion (double linked) :O(1)
Search :O(n)

3.4 Binary Search Trees
Property : left element < root, right element >=
root

Minimum is leftmost node, maximum is
rightmost nodeO(h)

Height h : max number of edges from root to leaf
Search, insert, delete :O(h)
In-order : left subtree > root > right subtree
Preorder : root > left > right
Postorder : left > right > root
3.5 Graphs
V : set of vertices,E : set of edges
Edge : ordered pair of vertices
G = (V,E)

Adjacency list : Array of |V | linked-lists (one per
vertex), G.Adj[u] is {v : (u, v) ∈ E}
Space =Θ(V + E), list adjacent vertices =
Θ(deg(u)), test (u, v) ∈ E =O(deg(u))

Adjancy matrix :A = |V | × |V |where
aij = (i, j) ∈ E ? 1 : 0
Space =Θ(V 2), list adjacent vertices =Θ(V),
test (u, v) ∈ E =Θ(1)

BFS :O(V + E)

DFS :Θ(V + E)

Classification of edges : tree edge = DSF explored
(u, v), back edge = (u, v)where u is a
descendant of v, forward edge : (u, v)where v
is a descendant of u but not a tree edge, cross
edge : any other edge

Acyclic : Directed graphG is acyclic ⇐⇒ DFS
yields no back edges

Topological sort : call DFS and compute finishing
times, output vertices in decreasing order of
finishing times

Strongly connected component (SCC) : is a
maximal set of verticesC ⊆ V (in a directed
graph), such that ∀u, v ∈ C both u is
reachable from v and v is reachable from u
GSCC is a directed acyclic graph

SCC(G) : call DFS(G) compute finishing times,
computeGT , call DFS(GT) considering
vertices in order of decreasing finishing times
and output vertices in each tree of depth-first
forest as separate SCC,Θ(V + E)

3.6 Shortest path problem
Single source : from source to every vertex
Single destination : from every vertex to
destitution

Single pair : from u to v
All pairs : ∀u, v ∈ V from u to v

Negative weight : ok as long as no
negative-weight cycle reachable from source

Weigt of path ⟨v0, v1, . . . , vk⟩ :∑k
i=1 w(vi−1, vi)

Bellman-FordΘ(E · V) : (no negative cycles)
each vertex v keep track of d(v) (current
upper estimate length shortest path to v) and
π(v) (the predecessor of v in shortest path)

1 def relax(u, v, w):
2 if v.d > u.d + w(u,v):
3 v.d = u.d + w(u,v)
4 v.π = u
5
6 def bellman_ford(G, w, s):
7 for v in G.V:
8 v.d, v.π = INF, NIL
9 s.d = 0 # init
10 for i in range(len(G.V) - 1):
11 for (u, v) in G.E:
12 relax(u, v, w)
Negative cycles detection : run onemore (V-th)
iteration

1 ...
2 for (u, v) in G.E:
3 if v.d > u.d + w(u,v):
4 return False
Dijkstra : (nonnegative weights), binary heap

O(E logV),O(V logV + E), start with
source S = {s}, greedily grow S (add
to S the vertex closest to S, minimize
u.d + w(u, v))

1 ... # init
2 S = set()
3 Q = G.V
4 while Q:
5 u = extract_min(Q)
6 S |= {u}
7 for v in G.Adj[u]:
8 relax(u, v, w)
9 decrease_key(Q, v, v.d)
3.6.1 Flow Network
Edge (pipes) has capacity (c(u, v) ≥ 0) = flow
rate upper bound, maximize rate of flow from
source s to sink t, no anti-parallel edges

Flow : function f : V × V → R such that
∀u, v ∈ V : 0 ≤ f(u, v) ≤ c(u, v)
(capacity constraint) and ∀u ∈ V \ {s, t} :∑

v∈V f(v, u) =
∑

v∈V f(u, v) (flow into u
= flow out of u, flow conservation)

Flow value : |f | =
∑

v∈V f(s, v) −∑
v∈V f(v, s), flow out of source - flow into

source
Residual capacity : cf (u, v) = c(u, v) − f(u, v)
if (u, v) ∈ E (amount of capacity left), f(v, u)
if (v, u) ∈ E (amount of flow that can be
reversed), 0 otherwise

Residual network : edges with capacities that
represent howwe can change the flow on
edges,Gf (V,Ef) = (V,Ef)where
Ef = {(u, v) ∈ V × V : cf (u, v) > 0}

Ford-Fulkerson Method’54O(E · |fmax|) :
initialize flow f to 0, while ∃ augmenting
path p in residual networkGf : augment flow
f along p by bottleneck

BA3 ALGO Cheat Sheet 2/2 Lucas Jung

Cut : a partition of V into S and T = V \ S such
that s ∈ S and t ∈ T
Net flow across cut : f(S, T) =∑

u∈S,v∈T f(u, v) −
∑

u∈S,v∈T f(v, u)

(flow leaving S− flow entering S)
For any cut : |f | = f(S, T)
Capacity : c(S, T) =

∑
u∈S,v∈T c(u, v)

for any flow, cut : |f | = f(S, T) ≤ c(S, T)
max-flow=min-cut
number of possible cuts : 2|V |−2

Min-cut : set S of all nodes which can be reached
from s in the final residual network

Equivalences : f is max-flow ⇐⇒ Gf has no
augmenting path ⇐⇒ |f | = c(S, T) for
min-cut (S, T)

3.7 Disjoint-set
Aka. "union find", maintain collection S =

{S1, . . . , Sk} of disjoint dynamic sets, each
set defined by a representative (member of
the set)

Operations : make-set(x) (add a new
set Si = {x} to S), union(x, y)
(S = (S − Sx − Sy)∪ (Sx ∪ Sy)), find(x)
(representative of set containing x)

Connected components of Graph : for
each vertex make-set(v), for
each edge if find-set(u) ̸=
find-set(v) : union(u, v),
linked list weighted-union heuristic
O(V logV + E), forest union-by-rank
O((V + E)α(V)) ≈ O(V + E)

Weigted-union heuristic : always append the
smaller list to the larger list (break ties
arbitrarily), sequence ofm operations on n
elements takeO(m+ n logn) time

Forest of trees : one tree per set, root is
representative, each node only points to
parent, make-set (single-node tree), find
(follow pointers to root), union (make one
root a child of another)O(m · α(n))
Great heuristics : union by rank (root of the
smaller (rank) tree becomes child of root of
larger tree), don’t use size, use rank (upper
bound on height of node)

Spanning tree : acyclic set T of edges, spanning
(connects all vertices)

Cut property : let (S, V \ S) a cut, T a tree
on S which is part of MST, e a crossing edge
of minimumweight, =⇒ ∃MST ofG
containing e and T

Prim Min spanning tree (MST)O(E logV) :
start with any vertex v and build tree T from
v, greedily grow T (add to T amin weight
crossing edge with respect to cut induced by
T)

KruskalO(E logV) : start from empty forest T ,
greedily maintain forest T (add cheapest edge
that does not create cycle)

3.8 Hash

Direct-Address Tables : every item has unique id,
array/table with position for each item,O(1)
insertion deletion and search, spaceO(|U |),
small fraction of possible items

Hash Tables : space proportional to number k of
keys storedΘ(k), search insertion deletion
O(1) average time, itemwith key k sorted in
slot h(k), h : U → {0, 1, . . . ,m − 1} hash
function

Hash function properties : efficient computable,
uniform keys distribution, deterministic (h(k)
always equal to h(k)), example : h(k) = k
mod m

Collisions : two items with keys ki, kj have
h(ki) = h(kj), place all items with same
hash into same (double) linked list, insertion
deletion and expected searchO(1), space
O(m+ k)

4 Dynamic programming
Remember calculations already made to save
enormous amount of computation

Top-downmemoization : solve recursively and
store each result in table

Bottom-up : sort subproblems, solve smaller
first, already have solved smaller ones when
solving a subproblem

5 Probabilistic analysis
Indicator Random Variables : eventA, I{A} = 1
ifA occurs and 0 ifA does not occur

XA = I{A} =⇒ E[XA] = P [A]
Linearity of expectation :E[aX + bY] =

aE[X] + bE[Y]

	Sorting
	Insertion sort
	Merge sort
	Heapsort
	Quick Sort
	Counting sort

	Divide & conquer
	Strassen algorithm
	Master theorem
	Max subarray

	Data structures
	Heap
	Max-Heapify
	Build Max-Heap
	Priority Queue

	Stack and Queues
	Linked list
	Binary Search Trees
	Graphs
	Shortest path problem
	Flow Network

	Disjoint-set
	Hash

	Dynamic programming
	Probabilistic analysis

