1 Sorting

1.1 Insertion sort

Best case : sorted input $\Theta(n)$
Worst case : reverse sorted $\Theta\left(n^{2}\right)$
1 for i in range(1, len(l))

$\left[j^{j+1]}=\mathrm{val}\right.$

1.2 Merge sort

Runtime complexity : $\Theta(n \log n)$
Not in-place
1 \# l1, 12 sorted
def merge(l1, 12)
$\mathrm{i}, \mathrm{j}=0,0$
$=[]$
while $\mathrm{i}<$ len(l1) and $\mathrm{j}<$
$\rightarrow \quad$ len(l2):
cond $=11[i]<12[i]$
l.append(l1[i] if cond else
$\rightarrow+=$ cond
$i+=$ cond
$j+=$ not cond
return l + l1[i:] + l2[j:]
2 def merge_sort(l)
if len(l) $\leqslant 1$: return 1
mid $=$ len(l) // 2
l1 = merge_sort (l[:mid])
12 = merge_sort(l[mid:])
return merge(l1, l2)

3 Heapsort

Runtime complexity: $\Theta(n \log n)$
In-place
1 def heap_sort(A):
2 build_max_heap(A)
for i in reversed (range(1,
$\rightarrow \quad$ len(A)) :
$A[0], A[i]=A[i], A[0]$
max_heapify(A, 0, i)

1.4 Quick Sort

Runtime complexity: $\Theta\left(n^{2}\right)$
Best case : subarrays completely balanced
$\Theta(n \log n)$
Random version: $O(n \log n)$

In-place

1 \# A[p..r] subarray
\# last element of array as pivot def partition(A, p, r):

$$
\begin{aligned}
& x=A[r] \\
& i=p-1
\end{aligned}
$$

for j in range (p, r) : if $\underset{i}{A[j]} \underset{+=1}{\leqslant} x$:
$A[i], A[j]=A[j], A[i]$
$A[i+1], A[r]=A[r], A[i+1]$

$$
5
$$

2
3 def random_partition(A, p, r):
$\mathrm{i}=\operatorname{random}(\mathrm{p}, \mathrm{r})$
$A[r], A[i]=A[i], A[r]$
return partition(A, p, r)

18 def quicksort(A, $\mathrm{p}, \mathrm{r})$:
19 if p < r

15 Countingicksort(A, q + $\mathbf{1}, \mathrm{r}$)

Count occurrences of elements in another array of length n, then rewrite elements back into array
Running time : $\Theta(n+k)$ when all numbers are between 0 and k

2 Divide \& conquer

$T(n)$: time for size n
a : number of sub-problems
$\frac{n}{b}$: size of sub-problems
$D(n)$: time to divide
$C(n)$: time to combine
$T(n)=a T\left(\frac{n}{b}\right)+D(n)+C(n)$

2.1 Strassen algorithm

Runtime complexity: $\Theta\left(n^{\log _{2} 7}\right)$
$A, B, C: \frac{n}{2} \times \frac{n}{2}$
$\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$
$M_{1}:=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)$
$M_{2}:=\left(A_{21}+A_{22}\right) B_{11}$
$M_{3}:=A_{11}\left(B_{12}-B_{22}\right)$
$M_{4}:=A_{22}\left(B_{21}-B_{11}\right)$
$M_{5}:=\left(A_{11}+A_{12}\right) B_{22}$
$M_{6}:=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right)$
$M_{7}:=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)$
$C_{11}=M_{1}+M_{4}-M_{5}+M_{7}$
$C_{12}=M_{3}+M_{5}, \quad C_{21}=M_{2}+M_{4}$
$C_{22}=M_{1}-M_{2}+M_{3}+M_{6}$

2.2 Master theorem

$a, b>=1, c \leq 1, \epsilon>0$ constants

$$
T(n)=\left(a T\left(\frac{n}{b}\right)+f(n)\right) \in
$$

$\Theta\left(n^{\log _{b} a}\right)$ if $f(n) \in O\left(n^{\log _{b}(a-\epsilon)}\right)$

$$
\Theta\left(n^{\log _{b} a} \log n\right) \text { if } f(n) \in \Theta\left(n^{\log _{b} a}\right)
$$

$\Theta(f(n))$ if $f(n) \in \Omega\left(n^{\log _{b}(a+\epsilon)}\right)$

$$
\text { and } a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n), \forall n>N
$$

2.3 Max subarray

Runtime (divide and conquer) : $\Theta(n \log n)$
1 def max_from(l, $s=0$):
return $\max ((s:=s+e, i)$ for
$\rightarrow \quad i$, e in enumerate($($))
def max_crossing(l1, l2):
s1, i = max_from(reversed(l1))
s2, j = max_from(iter(l2))
return s1 + s2, (i, len(l1) +
\rightarrow j)
9 def max_subarray(l):
if $\overline{l e n}(l)=1$:
return l[0], (0, 0)
mid $=$ len(l) // 2
ls = l[:mid], l[mid:]

14 s1, s2 = map(max_subarray, ls) s3 = max_crossing(*ls) return max(s1, s2, s3)
Runtime linear: $O(n)$
1 def max_subarray_lin(l):
$M=m=(l[0],(0,0))$
for i in range(1, len(l)):
m \quad [0]
$\rightarrow \quad i)$)
$M=\max (M, m)$

ata structures

3.1 Heap

Heap (not garbage-collected storage) : nearly compete binary tree
$\operatorname{Max}(\mathrm{Min})$-Heap property : key of i's children is
<=(>=) to i's key,
maximum (minimum) element is the root
Height of node : nb of edges on longest simple path from node to a leaf
Height of head : height of root
Store heap in array :
L[0] root
$L[(2 * i)+1]$ left child node
$L[(2 * i)+2]$ right child node
L[(i-1)//2] parent node

3.1.1 Max-Heapify

Runtime complexity : $O(\log n)$

Space complexity: $\Theta(n)$
Maintains the Max-Heap property given a heap such that the subtrees are Max-Heap

$3 \quad \mathrm{c}=$ filter $($ lambda $i: ~ i<n, I)$
m $=\max (c$, key=lambda i: $A[i])$
$m \neq 1$:
$A[i], A[m]=A[m], A[i]$
max_heapify (A, m, n)

3.1.2 Build Max-Heap

Runtime complexity: $O(n)$
1 def build_max_heap(A):
2 for i in reversed(range(len(A)
\rightarrow // 2)):
3

3.1.3 Priority Queue

Dynamic set S of elements, each element has a key (value regulating its importance)
Insert(S, x) : $O(\log n)$
Maximum(S) : $O(1)$
Pop-Maximum $(\mathrm{S}): O(\log n)$
Increase-Key(S, x, k) :O(log $n)$

3.2 Stack and Queues

Very efficient, limited support (no search, ...),
arrays implementations have fixed capacity
Stack: Last-in, first-out
Push(S, x), Pop(S) : O(1)
Queue : First-in, first-out
Enqueue (Q, x), Dequeue (Q) : $O(1)$

Weigt of path $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$:
$\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$
Bellman-Ford $\Theta(E \cdot V)$: (no negative cycles) each vertex v keep track of $d(v)$ (current upper estimate length shortest path to v) and $\pi(v)$ (the predecessor of v in shortest path)
1 def relax(u, v, w):
2 if v.d >u.d + w(u,v):

$$
\begin{aligned}
& v . d=u \cdot d+w(u, v) \\
& v \cdot \pi=u
\end{aligned}
$$

$$
\begin{aligned}
& v . d=u . \\
& v \cdot \pi=u
\end{aligned}
$$

6 def bellman_ford(G, w, s): for v in $\bar{G} . V$: v.d, v.r = INF, NIL for i in range(len(G.v) for (u, v) in G.E: relax(u, v, w)
Negative cycles detection : run one more (V-th) iteration
for (u, v) in G.E:
if v.d > u.d $+w(u, v)$:
4 return False
Dijkstra : (nonnegative weights), binary heap $O(E \log V), O(V \log V+E)$, start with source $S=\{s\}$, greedily grow S (add to S the vertex closest to S, minimize

.d + w(u, v))

$\cdots=\operatorname{set}()$

$\mathrm{Q}=\mathrm{G} . \mathrm{V}$ while Q :

u = extract_min(Q)

$\mathrm{S} \mathrm{I}=\{\mathrm{u}\}$
for v in $G . A d j[u]:$
relax(u, v, w)
decrease_key ($Q, v, v . d$)
3.6.1 Flow Network

Edge (pipes) has capacity $(c(u, v) \geq 0)$ flow rate upper bound, maximize rate of flow from source s to $\operatorname{sink} t$, no anti-parallel edges
Flow: function $f: V \times V \rightarrow \mathbb{R}$ such that $\forall u, v \in V: 0 \leq f(u, v) \leq c(u, v)$ (capacity constraint) and $\forall u \in V \backslash\{s, t\}$ $\sum_{v \in V} f(v, u)=\sum_{v \in V} f(u, v)$ (flow into u $=$ flow out of u, flow conservation)
Flow value: $|f|=\sum_{v \in V} f(s, v)$ -
$\sum_{v \in V} f(v, s)$, flow out of source - flow into source
Residual capacity: $c_{f}(u, v)=c(u, v)-f(u, v)$ if $(u, v) \in E$ (amount of capacity left), $f(v, u)$ if $(v, u) \in E$ (amount of flow that can be reversed), 0 otherwise
Residual network : edges with capacities that represent how we can change the flow on edges, $G_{f}\left(V, E_{f}\right)=\left(V, E_{f}\right)$ where
$E_{f}=\left\{(u, v) \in V \times V: c_{f}(u, v)>0\right\}$
Ford-Fulkerson Method'54 $O\left(E \cdot\left|f_{\max }\right|\right)$: initialize flow f to 0 , while \exists augmenting path p in residual network G_{f} : augment flow f along p by bottleneck

Cut: a partition of V into S and $T=V \backslash S$ such Direct-Address Tables: every item has unique id that $s \in S$ and $t \in T$
Net flow across cut: $f(S, T)=$
$\sum_{u \in S, v \in T} f(u, v)-\sum_{u \in S, v \in T} f(v, u)$
(flow leaving S - flow entering S)
For any cut: $|f|=f(S, T)$
Capacity: $c(S, T)=\sum_{u \in S, v \in T} c(u, v)$
for any flow, cut : $|f|=f(S, T) \leq c(S, T)$
max-flow $=$ min-cut
number of possible cuts : $2^{|V|-2}$
Min-cut : set S of all nodes which can be reached from s in the final residual network
Equivalences: f is max-flow $\Longleftrightarrow G_{f}$ has no augmenting path $\Longleftrightarrow|f|=c(S, T)$ for min-cut (S, T)

3.7 Disjoint-se

Aka. "union find", maintain collection $S=$
$\left\{S_{1}, \ldots, S_{k}\right\}$ of disjoint dynamic sets, each
set defined by a representative (member of the set)
Operations: make-set (x) (add a new set $S_{i}=\{x\}$ to S), union (x, y)
$\left(S=\left(S-S_{x}-S_{y}\right) \cup\left(S_{x} \cup S_{y}\right)\right)$, find (x) (representative of set containing x)
Connected components of Graph : for each vertex make-set (v), for each edge if find-set $(u) \neq$ find-set(v):union(u, v), linked list weighted-union heuristic
$O(V \log V+E)$, forest union-by-rank
$O((V+E) \alpha(V)) \approx O(V+E)$
Weigted-union heuristic : always append the smaller list to the larger list (break ties arbitrarily), sequence of m operations on n elements take $O(m+n \log n)$ time Forest of trees : one tree per set, root is representative, each node only points to parent, make-set (single-node tree), find (follow pointers to root), union (make one root a child of another) $O(m \cdot \alpha(n))$ Great heuristics : union by rank (root of the smaller (rank) tree becomes child of root o larger tree), don't use size, use rank (upper bound on height of node)
spanning tree: acyclic set T of edges, spanning (connects all vertices)
Cut property: let ($S, V \backslash S$) a cut, T a tree on S which is part of MST, e a crossing edge of minimum weight $\Longrightarrow \exists$ MST of G containing e and T
Prim Min spanning tree (MST) $O(E \log V)$:
start with any vertex v and build tree T from
v, greedily grow T (add to T a min weight
crossing edge with respect to cut induced by T)
greedily $O(E \log V)$: start from empty forest T, greedily maintain forest T (add cheapest edge that does not create cycle)

3.8 Hash

