$C^0(\Omega; \mathbb{R}^n)$								=
$(F_1(x),\ldots$	٠, ١	$F_n(x)$;))	$ F_i $	\in	$C^0(\Omega)$	2)	

1 Opérateurs différentiels

Gradient:
$$(\Omega \subseteq \mathbb{R}^n \to \mathbb{R} : \Omega \to \mathbb{R}^n)$$

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}\right)$$

Laplacien :
$$(\Omega \subseteq \mathbb{R}^n \to \mathbb{R} : \Omega \to \mathbb{R})$$

$$\Delta f(x) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}(x)$$

Divergence:
$$(\Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n : \Omega \to \mathbb{R})$$

$$\operatorname{div} F(x) = \sum_{i=1}^n \frac{\partial F_i}{\partial x_i}(x)$$

Rotationnel:

$$(\Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2 : \Omega \to \mathbb{R})$$

$$\operatorname{rot} F(x) = \frac{\partial F_2}{\partial x_1}(x) - \frac{\partial F_1}{\partial x_2}(x)$$

$$(\Omega \subseteq \mathbb{R}^3 \to \mathbb{R}^3 : \Omega \to \mathbb{R}^3)$$

$$\operatorname{rot} F(x) = (\operatorname{rot} F_{23}, \operatorname{rot} F_{31}, \operatorname{rot} F_{12})$$

1.1 Propriétés

$$\Omega\subseteq\mathbb{R}^n, f\in C^2(\Omega), F\in C^2(\Omega;\mathbb{R}^n)$$

$$\begin{aligned} \operatorname{div}(\nabla f) &= \Delta f \\ \operatorname{rot}(\nabla f) &= 0 \\ \operatorname{div}(\operatorname{rot}_{n=3} F) &= 0 \\ \operatorname{div}(f \cdot F) &= f \cdot \operatorname{div} F + \nabla f \cdot F \end{aligned}$$

2 Intégrales curvilignes

2.1 Courbes

Courbe régulière : sous-ensemble $I \subset \mathbb{R}^n$ tel que \exists une paramétrisation $\gamma: [a,b] \rightarrow$ $\mathbb{R}^n, t \mapsto \gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ où: $\gamma([a,b])=\Gamma=\{x\in\mathbb{R}^n|\exists t\in[a,b],\gamma(t)=x\}$ Formule de l'aire : Aire $(\Omega)=\int_{\partial\Omega}(0,x)\cdot dl=1$ $\gamma \in C^0([a,b]; \mathbb{R}^n) \cup C^1([a,b]; \mathbb{R}^n)$ $\|\gamma'(t)\| \neq 0, \forall t \in [a,b]$

Courbe régulière simple : $\exists \gamma : [a, b] \to \Gamma$ où : $\forall s, t \in [a, b], \gamma(s) = \gamma(t) \implies$ $s = t \text{ ou } \begin{cases} s = a, t = b \\ s = b, t = a \end{cases}$

Courbe fermée : $\exists \gamma : [a, b] \to \Gamma \mid \gamma(a) = \gamma(b)$ Courbe régulière par morceaux :

 $\Gamma = \Gamma_1 \cup \ldots \cup \Gamma_k$ où Γ_i est une courbe régulière et Γ est continue $\widetilde{\gamma}:[a,b] o -\Gamma, t \mapsto \gamma(-t+a+b)$ (Γ parcouru 6 Surfaces

dans l'autre sens) $\widetilde{\gamma}' = -\gamma'$

2.2 Intégrales

 $\Omega \in \mathbb{R}^n$ ouvert, $\Gamma \subset \Omega$ régulière, $\gamma : [a, b] \to \Gamma$

Pour
$$f \in C^0(\Omega)$$
:

$$\int_{\Gamma} f \, dl = \int_{a}^{b} f(\gamma(t)) \cdot \|\gamma'(t)\| \, dt$$

Pour
$$F \in C^0(\Omega; \mathbb{R}^n)$$
:

$$\int_{\Gamma} F \cdot dl = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

Pour Γ régulière par morceaux :

$$\int_{\Gamma} f \, dl = \sum_{i=1}^{k} \int_{\Gamma_i} f \, dl$$
$$\int_{\Gamma} F \cdot dl = \sum_{i=1}^{k} \int_{\Gamma_i} F \cdot dl$$

 $\|\gamma'(t)\| = 1 \implies \int_{\Gamma} f \, dl = \int_{a}^{b} f(\gamma(t)) \, dt$ $\int_{\Gamma} f \, dl$ ne dépend pas du choix de γ $\int_{\Gamma} F \cdot dl$ ne dépend pas (\pm) du choix de γ Longueur de Γ : $\int_{\Gamma} 1 dl = \int_{a}^{b} ||\gamma'(t)|| dt$

3 Champs dérivés de potentiel

 $\Omega \subset \mathbb{R}^n$ ouvert, $F \in C^0(\Omega; \mathbb{R}^n)$ dérive du potentiel $f \in C^1(\Omega)$ si $F = \nabla f$ (f: primitive de F)F dérive du potentiel f et Γ régulière \implies $\int_{\Gamma} F \cdot dl = f(\gamma(b)) - f(\gamma(a))$

Domaine étoilé : $\exists x_0 \in \Omega$ (centre) tel que $\forall x \in \Omega$, (segment) $[x_0, x] \subset \Omega$ Étoilé \implies simplement connexe $\Omega \subset \mathbb{R}^n$ ouvert, $F \in C^0(\Omega; \mathbb{R}^n)$ F dérive d'un potentiel $\implies \text{rot} F = 0$ pour $n=2,3, \operatorname{sinon} \forall i,j: rac{\partial F_i}{\partial x_j} = rac{\partial F_j}{\partial x_i}$ Ω étoilé \Longrightarrow la réciproque est vraie F dérive d'un potentiel $\iff \int_{\Gamma} F \cdot dl =$

4 Théorème de Green

 $\overline{\Omega} = \Omega \cup \partial \Omega$

$$\begin{array}{ll} \Omega \, = \, \Omega_0 \, \setminus \, \bigcup_{i=1}^k \Omega_i \, \mathrm{r\'egulier} \colon & \overline{\Omega}_i \, \subseteq \, \Omega_0, \\ \overline{\Omega}_i \, \cup \, & \overline{\Omega}_j \, = \, \emptyset, \partial \Omega_i \, \mathrm{rpmsf} \, (1 \, \leq \, j \, < \, k) \end{array}$$

dl, $\forall \Gamma_1$, Γ_2 rpms avec mêmes extrémités

Orienté positivement : paramétrisation laisse le $\iint_{\Sigma} \mathrm{rot} F \cdot ds = \int_{\partial \Sigma} F \cdot dl$ domaine Ω à gauche.

 $\Omega \subset \mathbb{R}^2$ régulier, $\partial \Omega$ orienté positivement, $F \in C^1(\Omega; \mathbb{R}^2)$: $\iint_{\Omega} \operatorname{rot} F(x, y) \, dx \, dy = \int_{\partial \Omega} F \cdot dl$

 $\int_{\partial\Omega} (-y,0) \cdot dl$

5 Théorème divergence

Normale extérieure $\overrightarrow{\nu}_P$ où $\Omega \subset \mathbb{R}^2$ régulier, $\gamma(t_0) = P \in \partial \Omega : \| \overrightarrow{\nu}_P \| = 1,$ $\gamma'(t_0) \cdot \overrightarrow{\nu}_P = 0, \forall \varepsilon > 0 : P + \varepsilon \overrightarrow{\nu}_P \notin \Omega$

 $\iint_{\Omega} \operatorname{div} F \, dx \, dy = \iint_{\partial \Omega} (F \cdot \vec{\nu}) \, dl$

Pour γ régulier et $\partial\Omega$ orienté positivement : $\overrightarrow{\nu}_{\gamma(t)} = \frac{(\gamma_2'(t), -\gamma_1'(t))}{\|\gamma'(t)\|}$ $\int_{\partial\Omega} F \cdot \overrightarrow{\nu} \, dl = \int_a^b F(\gamma(t)) \cdot (\gamma_2'(t), -\gamma_1'(t)) dt$

6.1 Représentations

$$\begin{array}{l} \operatorname{Cart\acute{e}sienne}\colon f:\ \Omega\subset\mathbb{R}^2\to\mathbb{R}, S=\\ \{(x,y,z)\in\mathbb{R}^3:z=f(x,y)\}\\ \operatorname{Implicite}\colon f:\ \mathbb{R}^3\to\mathbb{R}, S=\{(x,y,z):\\ f(x,y,z)=0\}\\ \operatorname{Param\acute{e}trique}\colon \operatorname{Si}\sigma:\ \Omega\subset\mathbb{R}^2\to\mathbb{R}^3,\\ S=\operatorname{Im}(\sigma)=\sigma(\Omega) \end{array}$$

6.2 Intégrale

Surface régulière :
$$\Sigma \subset \mathbb{R}^3$$
 telle que $\exists \Omega \subset \mathbb{R}^2$ $F_N^{\mathbb{C}}f(x) = \sum_{n=-N}^N c_n e^{i\frac{2\pi}{T}nx}$ ouvert borné où $\partial \Omega$ srpm et $\sigma \in C^1(\overline{\Omega}; \mathbb{R}^3)$: $F^{\mathbb{C}}f(x) = \lim_{N \to +\infty} F_N^{\mathbb{C}}f(x) = \overline{\Omega} \to \mathbb{R}^3$ injective sur Ω et telle que $\sigma(\overline{\Omega}) = \Sigma$, et $\sigma : \overline{\Omega} \to \mathbb{R}^3$ $(u,v) \mapsto \sigma(u,v)$ $\sum_{n=-\infty}^{+\infty} c_n e^{i\frac{2\pi}{T}nx}$ on a $\forall (u,v) \in \Omega$ $\|\sigma_u \times \sigma_v\| \neq 0$ où

 $\sigma_u = \frac{\partial \sigma}{\partial u}, \sigma_v = \frac{\partial \sigma}{\partial v}$ Régulière par morceaux : $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_k$ telles que Σ est connexe, Σ_i régulières et ne se "touchent qu'au bord"

Vecteurs normaux unitaires : $\pm \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}$

Intégrale de surface : $\Omega \subset \mathbb{R}^3$ ouvert contenant $F_N^{\mathbb{R}} f(x) = \frac{a_0}{2} +$ Σ régulière, $f \in C^0(\Omega), F \in C^0(\Omega; \mathbb{R}^3)$, $A \subset \mathbb{R}^2$ ouvert, $\sigma : \overline{A} \to \Sigma(u,v) \mapsto \sigma(u,v)$ une paramétrisation régulière : $\iint_{\Sigma} f \, ds = \iint_{A} f(\sigma(u, v)) \cdot \|\sigma_{u} \times \sigma_{v}\| \, du dv$

 $\iint_{\Sigma} F \cdot ds = \iint_{\Lambda} F(\sigma(u, v)) \cdot (\sigma_u \times \sigma_v) du dv$ $\iint_{\Sigma} f \, ds$ ne dépend pas du choix de σ $\iint_{\Sigma} F \cdot ds$ ne dépend pas (±) du choix de σ

Flux : $\nu:\Sigma\to\mathbb{R}^3$ champs de normales unités de Σ , $\iint_{\Sigma} (F \cdot \nu) ds = \pm \iint_{\Sigma} F \cdot ds =$ flux de f à travers Σ Aire: Aire(Σ) = $\iint_{\Sigma} 1 \, ds$

 $0, \forall \Gamma \text{ rpmsf} \in \Omega \iff \int_{\Gamma_1} \mathring{F} \cdot dl = \int_{\Gamma_2} F \cdot \text{ Th\'eor\'eme divergence } \mathbb{R}^3 : \Omega \subset \mathbb{R}^3 \text{ r\'egulier, } F \in \mathbb{R}^3$ $C^1(\overline{\Omega};\mathbb{R}^3), \nu$ champ de normales extérieures $F_n = \sum_{n=1}^\infty \widehat{b_n} \sin\left(\frac{\pi}{L}nx\right)$ $\hat{a} \Omega : \iiint_{\Omega} \operatorname{div} F \, dx \, dy \, dz = \iint_{\partial \Omega} (F \cdot \nu) \, ds$

7 Théorème de Stokes

 $\Sigma \subset \mathbb{R}^3$ surface rpmo, $\Omega \subset \mathbb{R}^3$ contenant Σ , $F \in C^1(\Omega; \mathbb{R}^3)$

 $\partial \Sigma = \emptyset \implies \iint_{\Sigma} \operatorname{rot} F \cdot ds = 0 \,\forall F$

8 Fourier

T-Périodique : $f: \mathbb{R} \to \mathbb{R}$, si f(x+T) = $f(x) \, \forall x \in \mathbb{R}$ $\implies \int_0^T f(x) dx = \int_h^{T+h} f(x) dx$ Espace vectoriel de Fourier : $V = \{ f = g + ih \mid g, h \in C^1_{more}([0, T]) : \}$ $\mathbb{R} \to \mathbb{R} T$ -périodiques} $\langle f_1, f_2 \rangle = \frac{1}{T} \int_0^T f_1(x) \cdot f_2(x) dx$

Base orthonormée : $e^{i\frac{2\pi}{T}nx} = \cos\left(\frac{2\pi}{T}nx\right) + f' - f = h \iff Ff' - Ff = Fh$ $i\sin(\frac{2\pi}{T}nx), \quad n \in \mathbb{Z}$

 $f: \mathbb{R} \to \mathbb{R}$ T-périodique $C^1_{\mathsf{morc}}([0,T])$ $F_N^{\mathbb{R}}f(x) = F_N^{\mathbb{C}}f(x) = F_Nf(x)$ $F^{\mathbb{R}}f(x) = F^{\mathbb{C}}f(x) = Ff(x)$

Théorème Dirichlet :
$$F^{\mathbb{C}}f(x) = \lim_{h \to 0} \frac{f(x-h) + f(x+h)}{2}$$
 f continue en x : $F^{\mathbb{C}}f(x) = f(x)$

Identité Parseval : $\frac{1}{T} \int_0^T f^2(x) dx =$ $\sum_{n=-\infty}^{+\infty} |c_n|^2 =$ $\frac{1}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{+\infty} \left(a_n^2 + b_n^2 \right) \right)$

8.1 Coefficients complexes

$$F_N^{\mathbb{C}}f(x) = \sum_{n=-N}^{N} c_n e^{i\frac{2\pi}{T}nx}$$

$$F_N^{\mathbb{C}}f(x) = \lim_{N \to +\infty} F_N^{\mathbb{C}}f(x) = v$$

$$F_{n=-\infty}^{+\infty} c_n e^{i\frac{2\pi}{T}nx}$$

8.2 Coefficients réels

$$a_n = \frac{2}{T} \int_0^T f(x) \cos\left(\frac{2\pi}{T} nx\right) dx, \quad (n \ge 0)$$

$$a_n = c_n + c_{-n}$$

$$b_n = \frac{2}{T} \int_0^T f(x) \sin\left(\frac{2\pi}{T} nx\right) dx, \quad (n \ge 1)$$

$$b_n = i(c_n - c_{-n})$$

$$F_N^{\mathbb{R}} f(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos\left(\frac{2\pi}{T} nx\right) + b_n \sin\left(\frac{2\pi}{T} nx\right) \right)$$

$$F^{\mathbb{R}}f(x) = \lim_{N \to \infty} F_N^{\mathbb{R}}f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi}{T}nx\right) + b_n \sin\left(\frac{2\pi}{T}nx\right) \right)$$

f paire : $b_n = 0$, f impaire : $a_n = 0$

8.3 Série de Fourier

$$f \in C^1_{\text{morc}}([0, L])$$

$$\widetilde{a_n} = \frac{1}{L} \int_0^L f(x) \cos(\frac{\pi}{L} nx) dx$$

$$\widetilde{b_n} = \frac{1}{L} \int_0^L f(x) \sin(\frac{\pi}{L} nx) dx$$

En cosinus :
$$F_c f(x) = \frac{\widetilde{a_0}}{2} + \sum_{n=1}^{\infty} \widetilde{a_n} \cos(\frac{\pi}{L} nx)$$

En sinus : $F_s f(x) = \sum_{n=1}^{\infty} \widetilde{b_n} \sin(\frac{\pi}{L} nx)$

f continue $\implies F_c f(x) = F_s f(x) = f(x)$ $F_c f(0) = f(0), F_c f(L) = f(L), F_s f(0) =$ $0 = F_s f(L)$

8.4 Application EDO

 $f: \mathbb{R} \to \mathbb{R}$, continue, T-periodique, f' existe (sauf en nb finis pts $\in [0, T]$), $f \in C^1_{\mathsf{morc}}([0,T])$

$$Ff'(x) = \sum_{n=-\infty}^{\infty} c_n i \frac{2\pi}{T} n e^{i \frac{2\pi}{T} nx}$$

$$Ff'(x) = \sum_{n=1}^{\infty} \left(\frac{2\pi}{T} b_n \cos\left(\frac{2\pi}{T} nx\right) - \frac{2\pi}{T} a_n \sin\left(\frac{2\pi}{T} nx\right)\right)$$

$$c'_n = i \frac{2\pi}{T} n c_n, a'_n = \frac{2\pi}{T} n b_n, b'_n = -\frac{2\pi}{T} n a_n$$
calcul les coeffs de f à partir de ceux de f'

$$f' - f = h \iff Ff' - Ff = Fh$$

$$\forall n c_n (in - 1) = \hat{c_n}, c_n = \frac{\hat{c_n}}{in - 1}$$

$$a_n = c_n + c_{-n}, b_n = i(c_n - c_{-n}) = -\frac{\hat{b_n} - n\hat{a_n}}{n^2 + 1}$$

$$\hat{a_n}. \hat{b_n} \text{ coeffs réels de } h(x)$$

9 Transformée de Fourier

 $V = \mathbb{R}^n, v \in V \implies v = \sum_{j=1}^n \langle v, e_j \rangle e_j$ Transformée de Fourier complexe : $f: \mathbb{R} \rightarrow$ $\mathbb{R}/\mathbb{C}, \int_{-\infty}^{\infty} |f(x)| dx < +\infty; \mathcal{F}f : \mathbb{R} \to$ $\mathbb{C}, \alpha \mapsto \mathcal{F}f(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$ Transformée de Fourier inverse : $g:\mathbb{R} \to$

 $\mathbb{C}, \alpha \mapsto g(\alpha)$ telle que $\int_{-\infty}^{\infty} |g(\alpha)| d\alpha <$ $+\infty; \mathcal{F}^{-1}g: \mathbb{R} \to \mathbb{C}, x \mapsto \mathcal{F}^{-1}g(x) =$ $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{i\alpha x} d\alpha$ Formule d'inversion : f : \mathbb{R} \rightarrow

 $\mathbb{C}, \hat{f}(\alpha) = \mathcal{F}f(\alpha)$ telle que $\int_{-\infty}^{\infty} |f(x)| dx <$ $+\infty, \int_{-\infty}^{\infty} |\hat{f}(x)| dx < +\infty;$ $\mathcal{F}^{-1}(\mathcal{F}(f))(x) = f(x)$ $\mathcal{F}(\mathcal{F}^{-1}(\hat{f}))(\alpha) = \hat{f}(\alpha)$

$\hat{f} = \mathcal{F}(f)$

Produit de convolution : $f, q : \mathbb{R} \to \mathbb{R}$, $\int |f|, |g| < +\infty; f * g : \mathbb{R} \to \mathbb{R} x \mapsto$ $f * g(x) = \int_{-\infty}^{\infty} f(x - t)g(t) dt$

Lucas Jung

9.1 Propriétés

$$f,g: \mathbb{R} \to \mathbb{C}, \int_{-\infty}^{\infty} |f(x)| dx < +\infty,$$

 $\int_{-\infty}^{\infty} |g(x)| dx < +\infty$

Continuité : $\mathcal{F}f(x)$ est continue en α Linéarité : $\mathcal{F}(af + bg) = a\mathcal{F}f + b\mathcal{F}g \, \forall a, b \in \mathbb{C}$ Décalage: $\mathcal{F}(f(x+b))(\alpha) = e^{ib\alpha}\mathcal{F}(f)(\alpha)$, $\mathcal{F}(e^{-i\beta x}f(x))(\alpha) = \mathcal{F}(f)(\alpha + \beta)$ Dilatation: $\mathcal{F}(f(cx)) = \frac{1}{|c|} \mathcal{F}(f)(\frac{\alpha}{c}), (c \neq 0)$

 $\mathcal{F}(\frac{1}{|\gamma|}f(\frac{x}{\gamma})) = \mathcal{F}(f)(\gamma\alpha), (\gamma \neq 0)$

Dérivation : $f \in C^1(\mathbb{R}), \int_{-\infty}^{\infty} |f'(x)| dx <$ $+\infty$; $\mathcal{F}(\frac{d}{dx}f)(\alpha) = \mathcal{F}(f')(\alpha) = i\alpha\mathcal{F}(f)(\alpha)$ Si $\int_{-\infty}^{\infty} |xf(x)| < +\infty$ alors $\mathcal{F}(-ixf(x))(\alpha) = (\mathcal{F}f)'(\alpha) = \frac{d}{dx}\mathcal{F}(f)(\alpha)$

 $\mathcal{F}(f^{(n)})(\alpha) = (i\alpha)^n \mathcal{F}(f)(\alpha),$ $\mathcal{F}((-ix)^n f(x))(\alpha) = (\mathcal{F}f)^{(n)}(\alpha)$ Identité de Parseval : $\int_{-\infty}^{\infty} |f(x)|^2 dx < +\infty$;

 $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(\alpha)|^2 d\alpha$ Parité: f paire \implies $\hat{f}(\alpha) =$ $\sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(\alpha x) dx$, $\hat{f}(\alpha)$ paire $f \text{ impaire } \Longrightarrow f(\hat{\alpha}) =$ $-i\sqrt{\frac{2}{\pi}}\int_0^\infty f(x)\sin(\alpha x)\,dx,\,\hat{f}(\alpha)$ impaire

Convolution: $\int_{-\infty}^{\infty} |f * g(x)| dx < +\infty$ et $\mathcal{F}(f * q) = \sqrt{2\pi} \mathcal{F}(f) \cdot \mathcal{F}(q)$ Si $\int |\hat{f}|, |\hat{g}| < +\infty$, alors $\mathcal{F}^{-1}(\hat{f}*\hat{g}) = \sqrt{2\pi}f \cdot g$, $\hat{f} * \hat{q} = \sqrt{2\pi} \mathcal{F}(f \cdot q)$